首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Simultaneous determination of the fat-soluble vitamins A and E and the water-soluble vitamins B1, B2 and B6 has been carried using a screening method from fluorescence contour graphs. These graphs show different colour zones in relation to the fluorescence intensity measured for the pair of excitation/emission wavelengths. The identification of the corresponding excitation/emission wavelength zones allows the detection of different vitamins in an aqueous medium regardless of the fat or water solubility of each vitamin, owing to the presence of a surfactant which forms micelles in water at the used concentration (over the critical micelle concentration). The micelles dissolve very water insoluble compounds, such as fat-soluble vitamins, inside the aggregates. This approach avoids the use of organic solvents in determining these vitamins and offers the possibility of analysing fat- and water-soluble vitamins simultaneously. The method has been validated in terms of detection limit, cut-off limit, sensitivity, number of false positives, number of false negatives and uncertainty range. The detection limit is about g L–1. The screening method was applied to different samples such as pharmaceuticals, juices and isotonic drinks.  相似文献   

2.
The article describes an aptamer affinity column for selective solid-phase extraction of aflatoxin B2 (AFB2). Amino-modified aptamer against AFB2 was immobilized on CNBr-activated Sepharose through a covalent bond. The effects of oligosorbents based on 3′- or 5′-amino-modified sequences with a C6 or a C7 spacer arm were evaluated by UV spectroscopy at 260 nm. The extraction recovery was evaluated by HPLC with fluorometric detection. The extraction of AFB2 was optimized. Under the optimum conditions, the aptamer affinity column has a linear response to AFB2 in the range of 0.5–80 ng, with a capacity of 84.6 ng. Control supports without immobilized aptamers and a nonspecific oligosorbent immobilized with a negative control oligonucleotide were studied in order to demonstrate selectivity. The method was tested with spiked peanut sample (0.5–50 μg·kg?1 AFB2) and gave average recoveries of 80.9% and a mean relative standard deviation of 1.9%. The limit of detection is 25 pg·mL?1. This is much lower than the maximum residue limits suggested by the European Union. The columns can be re-used up to five times without any loss of performance. The oligosorbent was also applied to clean-up of AFB2 from peanut sample extracts before HPLC analysis. Results were further confirmed by ultra-fast liquid chromatography with tandem mass spectrometry. Conceivably, the method may also be applied to other samples, such as food, agricultural products, and traditional Chinese medicines.
Graphical abstract Schematic illustration of the fabrication procedures of aptamer affinity column, AAC (a), its principle of aptamer bound to aflatoxin B2 (b) and the obtained AAC (c).
  相似文献   

3.
Single crystals of (NH4)(CN3H6)[UO2(SeO3)2] (I) are synthesized and studied by X-ray diffraction analysis. The compound crystallizes in the triclinic crystal system with the unit cell parameters: a = 7.0051(2) Å, b = 9.4234(3) Å, c = 9.5408(3) Å, α = 88.727(1)°, β = 70.565(1)°, γ= 77.034(1)°, space group P 1, Z = 2, R = 0.0224. The main structural units of crystals I are the [UO2(SeO3)2]2? chains of the crystal-chemical group AB2B11 (A = UO 2 2+ , B2= SeO3 2?, B11= SeO3 2?) of the uranyl complexes. The uranium-containing complexes are joined into a three-dimensional framework by the ammonium and guanidinium ions and a system of hydrogen bonds.  相似文献   

4.
The structural parameters of the (2Σ+//Cv)-YbF, (1A1//C2v)-YbF2, (2A2//D3h)-YbF3, (1Ag//D2h)-YbF2Yb, (1Ag//C2h)-FYbF2YbF, (1A1//C2v)-FYbF2YbF, (1A1//C2v)-YbF2YbF2, (3B3u//D2h)-F2YbF2YbF2, (2A′//Cs)-FYbF2YbF2, and (3B2//С2v)-F2YbF2CeF2 molecules have been determined. Disproportionation of ytterbium monofluoride (2YbF → YbF2 + Yb + 0.46 eV) is less exothermic than dimerization (2YbF → YbF2Yb + 2.10 eV). The bond energy of the ytterbium difluoride molecules in the trans dimer (2.93 eV) exceeds those in the cis dimer (2.86 eV) and the coaxial dimer (1.66 eV). Ytterbium trifluoride dimerizes exothermically (2.95 eV) without spin pairing. The dipole and quadrupole moments of the molecules as well as the charges and spin populations of the atoms and the valence electron configurations of the lanthanides have been calculated.  相似文献   

5.
Indium strontium hydrogen nitrate SrIn2[PO3(OH)]4 was synthesized under mild hydrothermal conditions (T = 180 or 200°C) and characterized using IR spectroscopy, chemical analysis, and thermal analysis. A structure model obtained ab initio was refined by the Rietveld method: a= 9.6412(1) Å, b = 13.763(1) Å, c = 9.3579(1) Å, R obs = 0.0183, R p = 0.0493 (space group B2212, Z = 4). The acentricity of the structure was confirmed by SHG tests (I /I 2ω(SiO2) ≈ 2.0). In the SrIn2[PO3(OH)]4 structure, indium atoms reside in distorted InO6 octahedra and form, together with PO3(OH) tetrahedra, a mixed 3D structure {In2[PO3(OH)]4} 3∞ 2? whose voids are occupied by Sr2+ cations (CN = 8). The block-dimer In2(HPO4)10 is the most informative unit of the framework. Blocks are condensed into infinite columns running in the [101] direction. The compound is thermally stable up to 400°C.  相似文献   

6.
Gas-phase electron diffractometry was used to study the molecular structure of N,N′-ethylenebis(salicylaldiminato)nickel(II), NiO2N2C16H14, [hereinafter Ni(salen)] at 583(5) K. The molecule has C 2 symmetry with a practically planar structure of the NiN2O2 coordination unit and with internuclear distances r α (Ni-O) = 1.882(21) Å and r α (Ni-N) = 1.889(22) Å. The results of B3LYP/CEP-31G molecular structure calculations are in good agreement with experimental data, whereas the RHF/CEP-31G method significantly overestimates the Ni-N internuclear distance and gives worse results for other structural parameters. According to 3LYP/CEP-31G calculations, the 1 A low-spin state is 28 kJ/mole lower in energy than the 3 B high-spin state.  相似文献   

7.
The behavior of the [B12H12]2– anion in CH3CN, CF3COOH, and the CH3CN/CF3COOH system is studied by IR spectroscopy. Based on the IR spectroscopy data correlated with the data obtained when studying the protonation processes of boron cluster anions [B6H6]2– and [B10H10]2–, the possibility to prepare the protonated form of the closo-dodecaborate anion, namely monoanion [B12H13], is concluded in CF3COOH and the CH3CN/CF3COOH system. In the IR spectra of salts of the protonated forms of anions [BnHn]2– (n = 6, 10, 12) in solutions and Nujol mulls, a high-frequency shift of the ν(BH) absorption bands is observed as compared with the spectra of salts of non-protonated anions Cat2[BnHn] (Δν = 70–100 cm–1).  相似文献   

8.
The complex cobalt and nickel oxide Sr2.25Y0.75Co1.25Ni0.75O6.84 has been synthesized by the citrate method. The oxygen content of the oxide has been determined by iodometric titration. The crystal structure of the compound has been refined using X-ray powder diffraction data (a = 3.7951(2) Å, c = 19.700(1) Å, χ2 = 1.15, R F 2 = 0.0586, R p = 0.0365, R wp = 0.0462). Sr2.25Y0.75Co1.25Ni0.75O6.84 has the structure of the second member of the Ruddlesden-Popper series A n + 1BnO3n + 1.  相似文献   

9.
The authors report on a competitive potentiometric immunoassay for aflatoxin B1 (AFB1) in food that displays distinctly improved sensitivity. Gold nanoparticles (AuNPs; 16 nm i. d.) were functionalized with polyclonal anti-AFB1 antibody (pAb), whilst the sensor electrode was prepared by immobilizing AFB1-bovine serum albumin conjugate (AFB1-BSA) on a glassy carbon electrode. Upon addition of target AFB1, competitive immunobinding occurs between the analyte and AFB1-BSA for the labeled pAb on the AuNPs. The change in the surface charge as a result of the antigen-antibody reaction causes a shift in the electrical potential. With increasing concentrations of analyte (AFB1), the quantity of pAb-AuNP captured by the electrode decreases. The shift in the output potential is linearly proportional to the logarithm of AFB1 concentration in the 0.1 to 5.0 μg?·?kg?1 range, with a detection limit (LOD) of 87 ng?·?kg?1 (87 ppt). An intermediate precision of 10.9 % was accomplished in batch-to-batch identification. The selectivity over AFB2 with similar chemical structure is acceptable. The method accuracy was evaluated by analyzing naturally contaminated and spiked peanut samples, giving consistent results (with RSD values of <12 %) between this immunoassay and the commercial ELISA.
Graphical Abstract A potentiometric immunosensor was designed for detection of AFB1 by using nanogold-labeled antibodies as the signal-amplification tags.
  相似文献   

10.
The authors describe a photoelectrochemical (PEC) immunoassay for determination of aflatoxin B1 (AFB1) in foodstuff. The competitive immunoreaction is carried out on a microplate coated with a capture antibody against AFB1 using AFB1-bovine serum albumin (BSA)-liposome-coated mesoporous silica nanoparticles (MSN) loaded with L-cysteine as a support. The photocurrent is produced by a photoactive material consisting of cerium-doped Bi2MoO6. Initially, L-cysteine acting as the electron donor is gated in the pores by interaction between mesoporous silica and liposome. Thereafter, AFB1-BSA conjugates are covalently bound to the liposomes. Upon introduction of the analyte (AFB1), the labeled AFB1-BSA complex competes with the analyte for the antibody deposited on the microplate. Accompanying with the immunocomplex, the liposomes on the MSNs are lysed upon addition of Triton X-100. This results in the opening of the pores and in a release of L-cysteine. Free cysteine then induces the electron-hole scavenger of the photoactive nanosheets to increase the photocurrent. The photocurrent (relative to background signal) increases with increasing AFB1 concentration. Under optimum conditions, the photoactive nanosheets display good photoelectrochemical responses, and allow the detection of AFB1 at a concentration as low as 0.1 pg·mL?1 within a linear response in the 0.3 pg·mL?1 to 10 ng·mL?1 concentration range. Accuracy was evaluated by analyzing naturally contaminated and spiked peanut samples by using a commercial AFB1 ELISA kit as the reference, and well-matching results were obtained.
Graphical abstract Schematic presentation of a photoelectrochemical immunoassay for AFB1. It is based on the use of Ce-doped Bi2MoO6 nanosheets and of liposome-coated mesoporous silica nanoparticles loaded with L-cysteine.
  相似文献   

11.
The crystal structure of a new bismuth aluminoborate Bi0.96Al2.37(B4O10)O is studied by single-crystal X-ray diffraction. The Bi0.96Al2.37(B4O10)O single crystals are hexagonal (space group \(P\bar 6\) 2m). The unit cell parameters are as follows: a = b = 4.587(4) Å, c = 2.253(9) Å, α = β = 90°, γ = 120°, V = 168.60 Å3, Z = 1.  相似文献   

12.
The aim of this paper is to report the results of a systematic high-resolution transmission electron microscopy study on Al18B4O33. The fluxing agent method permits the formation of needle-shaped whiskers of Al18B4O33, having sub-micron thickness with a tendency to come and fuse together. Amounts of 25% and 50% K2SO4, K2CO3 or KCl were used liked fluxing agents. Using this method, the optimum temperature for the synthesised compound was found to be 1000°C. The investigation techniques were X-ray diffraction and electron microscopy.  相似文献   

13.
Optimum conditions for synthesizing monoclinic and triclinic Mg2B2O5 compounds by high-temperature solid-state reactions were investigated. Mixtures composed of boric acid and magnesium oxide at MgO:B2O3 mole ratios of 1:0.25, 1:0.5 and 1:1.5 were heated for 1 hour at temperatures between 600–1050°C and the formed phases were identified by XRD analysis. Monoclinic Mg2B2O5 was formed by heating at 850°C for 4 hours together with minimum amounts of triclinic Mg2B2O5, while triclinic Mg2B2O5 was formed as a single phase at 1050°C for the same reaction time. The products obtained at optimum conditions were subjected to a series of tests to determine their chemical compositions, particle size distributions, surface area values, IR spectra and TG/DTA patterns.   相似文献   

14.
The complex [UO2(SeO4)(C5H12N2O)2(H2O)] (I) was synthesized and studied by thermal analysis, IR spectroscopy, and X-ray crystallography. The crystals are orthorhombic: a = 13.1661(3) Å, b = 16.4420(5) Å, c = 17.4548(6) Å, Pbca, Z = 8, R = 0.0423. The structural units of crystal I are chains with the composition coinciding with that of the compounds of the AB2M 3 1 crystal chemical group of the uranyl complexes (A = UO 2 2+ , B2 = SeO 4 2? , M1 = C5H12N2O and H2O).  相似文献   

15.
16.
A porous, hollow, microspherical composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) was prepared using hollow MnO2 as the sacrificial template. The resulting composite was found to be mesoporous; its pores were about 20 nm in diameter. It also delivered a reversible discharge capacity value of 220 mAh g?1 at a specific current of 25 mA g?1 with excellent cycling stability and a high rate capability. A discharge capacity of 100 mAh g?1 was obtained for this composite at a specific current of 1000 mA g?1. The high rate capability of this hollow microspherical composite can be attributed to its porous nature.
Graphical Abstract ?
  相似文献   

17.
The geometrical, electronic, and thermodynamic parameters of three known isomers of dinitrogen trioxide N2O3 were calculated by the density functional theory DFT/B3LYP method using the 6-311++G(3df) basis. The structure of the new isomer, NONO2, was calculated. From the calculation of vibrational frequencies it follows that the structure of NONO2 has a local potential energy minimum and corresponds to the stationary state of the N2O3 isomer. The molecular structure of NONO2 is characterized by a substantial negative charge on the NO2 fragment and positive charge on the NO fragment. The electronic structure of the NO+NO 2 ? isomer can be characterized as nitrosonium nitrite, which can be oxidized to nitrite and participate in nitrosylation in accordance with the biogenic characteristics of the NO x intermediate, assumed to be formed in biological systems during the oxidation of NO.  相似文献   

18.
The intermetallic cerium compounds Ce3-Pd3Bi4, CePdBi, and CePd2Zn3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. The compounds were characterized by X-ray powder and single crystal diffraction: CeCo3B2 type (ordered version of CaCu5), P6/mmm, a = 538.4(4), c = 427.7(4) pm, wR2 = 0.0540, 115 F 2 values, 9 variables for CePd2Zn3 and Y3Au3Sb4 type, I \({\bar 4}\)3d, a = 1005.2(2) pm, w R2 = 0.0402, 264 F 2 values, 9 variables for Ce3Pd3Bi4, and MgAgAs type, a = 681.8(1) pm for CePdBi. The bismuthide structures are build up from three-dimensional networks of corner-sharing PdBi4 tetrahedra with Pd–Bi distances of 281 (Ce3Pd3Bi4) and 296?pm (CePdBi), respectively. The cerium atoms are located in larger voids of coordination number 12 (Ce3Pd3Bi4) and 10 (CePdBi). In CePd2Zn3 the cerium atoms fill larger channels within the three-dimensional [Pd2Zn3] network with 18 (6 Pd + 12 Zn) nearest neighbors. The three compounds contain stable trivalent cerium with experimental magnetic moments of μeff = 2.70(2), 2.48(1), and 2.49(1) μB/Ce atom for CePd2Zn3, Ce3Pd3Bi4, and CePdBi, respectively. Susceptibility and specific heat data gave no hint for magnetic ordering down to 2.1?K.  相似文献   

19.
The combined application of optical emission spectroscopy (OES) and kinetic numerical modelling was employed to determine the N2+(X2\( \Sigma_{\text{g}}^{ + } \)), N3+, and N4+ densities in the post-discharge (pink afterglow; PA) of a nitrogen flowing DC discharge. We measured the relative densities of the N2(C3Πu) and N2+(B2\( \Sigma_{\text{u}}^{ + } \)) states along the post-discharge region by OES. The density values were attained as functions of the post-discharge residence time. We fitted the experimental densities with densities calculated from a kinetic numerical model developed to calculate the temporal density of several nitrogen species in the nitrogen afterglow. Analysis of the rate balance equations of these ions indicated that these densities can be determined from data generated from both the model and experimental N2+(B2\( \Sigma_{\text{u}}^{ + } \)) density. Thus, we determined the ions density profiles in the nitrogen post-discharge and observed that the N3+ density is dominant in the PA. This is followed by that of the N2+(X2\( \Sigma_{\text{g}}^{ + } \)) and N4+ ions. Such behaviour has been previously reported in a study that employed mass spectrometry to analyse the ions in the PA generated by a nitrogen high-frequency discharge. In our study, the DC discharge was operated at a gas flow rate of 0.9 Slm?1, a discharge current of 30 mA, and a gas pressure range of 400–700 Pa.  相似文献   

20.
The electronic structure of atomic oxygen adsorbed species is studied by means of the density functional theory in the context of the ethylene epoxidation on the silver surface. The adsorbed oxygen species are modeled by the Ag2O molecule either in its closed (1A1) or open-shell states (3B1 and 1B1). In both open-shell states the 1s level appears to be lower than that in 1A1 by about 2 eV. This is apparently a sequence of the separation of electron pair, occupying the *-type highest occupied molecular orbital (HOMO), decreasing the electron density at the oxygen center. Such variation of the O1s level for closed and open-shell Ag2O states seems to explain the X-ray photoelectron spectroscopy (XPS) data concerning two distinct atomic oxygen species on silver surface having the O1s binding energy of about 528 and 530 eV, called nucleophilic and electrophilic oxygen, respectively. The X-ray absorption O K-edge spectra (XANES) calculated for two types of the Ag2O states by means of multiple-scattered-X-based approach appears to be in a qualitative agreement with those experimentally recorded for nucleophilic and electrophilic oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号