首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Present study involves the investigation of the esterification kinetics between butyric acid and n-butanol. This reaction was conducted in a batch reactor, utilizing homogeneous methanesulfonic acid (MSA) catalyst. Response surface methodology (RSM) was conducted prior to the kinetic study using “Design Expert; version-11.0” for finding the causal factors influencing the conversion of butyric acid. Most important factors identified with their limits against conversions (during optimization of the process using RSM) were taken up to critically analyze the effect of them on butyric acid conversion. Concentration and activity-based model of the process were proposed assuming second order reversible reaction scheme using homogeneous MSA catalyst. During the study of non-ideal behavior of the system, UNIFAC model was adapted for assessing the activity coefficients of species present in equilibrated liquid phase. Experimental data were used to evaluate kinetic and thermodynamic parameters such as rate constants, activation energy, enthalpy, and entropy of the system. The endothermic nature of esterification was confirmed by positive value of enthalpy obtained. The effect of various levels of causal variables like temperature (60–90°C), catalyst concentration (0.5–1.5 wt.%), and molar ratio of n-butanol to butyric acid (1–3) on conversion kinetics of butyric acid was investigated during transient and equilibrium phase of the reaction. It has been observed that molar ratio of butanol to butyric acid has the highest influence on the conversion. The rate equation derived offered a kinetic and thermodynamic framework to the generated data. It also exhibits a notable degree of conformity of predicted data to the experimental ones and effectively characterizes the system across different reaction temperatures, reactant molar ratio, and catalyst concentration.  相似文献   

2.
The thermal cure kinetics of an epoxidized linseed oil with methyl nadic anhydride as curing agent and 1-methyl imidazole as catalyst was studied by differential scanning calorimetry (DSC). The curing process was evaluated by non-isothermal DSC measurements; three iso-conversional methods for kinetic analysis of the original thermo-chemical data were applied to calculate the changes in apparent activation energy in dependence of conversion during the cross-linking reaction. All three iso-conversional methods provided consistent activation energy versus time profiles for the complex curing process. The accuracy and predictive power of the kinetic methods were evaluated by isothermal DSC measurements performed at temperatures above the glass transition temperature of the completely cured mixture (T g ). It was found that the predictions obtained from the iso-conversional method by Vyazovkin yielded the best agreement with the experimental values. The corresponding activation energy (E a) regime showed an increase in E a at the beginning of the curing which was followed by a continuous decrease as the cross-linking proceeded. This decrease in E a is explained by a diffusion controlled reaction kinetics which is caused by two phenomena, gelation and vitrification. Gelation during curing of the epoxidized linseed/methyl nadic anhydride system was characterized by rheological measurements using a plate/plate rheometer and vitrification of the system was confirmed experimentally by detecting a significant decrease in complex heat capacity using alternating differential scanning calorimetry (ADSC) measurements.  相似文献   

3.
甲烷水合物膜生长动力学研究   总被引:4,自引:0,他引:4  
采用水中悬浮气泡法测定了温度为273.4~279.4 K、压力为3.60~11.90 MPa范围内甲烷微小气泡表面水合物膜生长动力学数据. 应用无因次Gibbs自由能差(-ΔGexp/RT)作为推动力, 提出了具物理意义的水合物膜生长动力学模型, 并回归得到甲烷水合物膜生长动力学反应级数为1.60, 表观活化能为55.95 kJ•mol-1, 指前因子为1.65×1011 mm2•s-1. 同时考察了温度和压力对甲烷水合物膜生长速率的影响.  相似文献   

4.
The quenching of polymerization with a chromium oxide catalyst by radioactive methanol 14CH3OH enables one to determine the concentration of propagation centers and then to calculate the rate constant of the propagation. The dependence of the concentration of propagation centers and the polymerization rate on reaction time, ethylene concentration, and temperature was investigated. The change of the concentration of propagation centers with the duration of polymerization was found to be responsible for the time dependence of the overall polymerization rate. The propagation reaction is of first order on ethylene concentration in the pressure range 2–25 kg/cm2. For catalysts of different composition, the temperature dependence of the overall polymerization rate and the propagation rate constant were determined, and the overall activation energy Eov and activation energy of the propagation state Ep were calculated. The difference between Eov and Ep is due to the change of the number of propagation centers with temperature. The variation of catalyst composition and preliminary reduction of the catalyst influence the shape of the temperature dependence of the propagation center concentration and change Eov.  相似文献   

5.
The reaction of myristic acid (MA) and isopropyl alcohol (IPA) was carried out by using both homogeneous and heterogeneous catalysts. For a homogeneously catalyzed system, the experimental data have been interpreted with a second order, using the power‐law kinetic model, and a good agreement between the experimental data and the model has been obtained. In this approach, it was assumed that a protonated carboxylic acid is a possible reaction intermediate. After a mathematical model was proposed, reaction rate constants were computed by the Polymath* program. For a heterogeneously catalyzed system, interestingly, no pore diffusion limitation was detected. The influences of initial molar ratios, catalyst loading and type, temperature, and water amount in the feed have been examined, as well as the effects of catalyst size for heterogeneous catalyst systems. Among used catalysts, p‐toluene sulfonic acid (p‐TSA) gave highest reaction rates. Kinetic parameters such as activation energy and frequency factor were determined from model fitting. Experimental K values were found to be 0.54 and 1.49 at 60°C and 80°C, respectively. Furthermore, activation energy and frequency factor at forward were calculated as 54.2 kJ mol?1 and 1828 L mol?1 s?1, respectively. © 2008 Wiley Periodicals, Inc. 40: 136–144, 2008  相似文献   

6.
The thermal behavior and kinetic parameters of the exothermic decomposition reaction of N-methyl-N-nitro-2,2,2-trinitroethanamine in a temperature-programmed mode have been investigated by means of differential scanning calorimetry (DSC).The kinetic equation of the exothermic decomposition process of the compound is proposed. The values of the apparent activation energy (Ea), pre-exponential factor (A), entropy of activation (ΔS^≠ ), enthalpy of activation (ΔH^≠ ), and free energy of activation (ΔG^≠ ) of this reaction and the critical temperature of thermal explosion of the compound are reported. Information is obtained on the mechanism of the initial stage of the thermal decomposition of the compound.  相似文献   

7.
Rate constants and activation parameters are reported for the decarboxylation of methylmalonic acid and n-octadecylmalonic acid in three normal alkanols (hexanol-1, octanol-1, and decanol-1). Enthalpies of activation for both substrates in the various solvents are found to be a linear function of the number of carbon atoms or methylene groups in the hydrocarbon chain of the solvent. For both reaction series the isokinetic temperature is found to be equal to the melting point of the substrate. The free energy of activation at the isokinetic temperature in kcal/mole is 29.0 for n-octadecylmalonic acid and 29.4 for methylmalonic acid. Based on the results of the present investigation as well as on previously reported data in the case of malonic acid and n-butylmalonic acid, an empirical method of calculating the rate of reaction for the decarboxylation of malonic acid and its n-alkyl derivatives in normal alkanols is proposed. As a further test of the method of calculation the decarboxylation of n-dodecylmalonic acid in heptanol-1 at 110.30°C was studied. The calculated value of the pseudo-first-order specific reaction velocity constant of the reaction agreed with the experimental value to within about 0.1 percent.  相似文献   

8.
The basic kinetic parameters of thermal polymerization of hexafluoropropylene, namely, general rate constants, degree of polymerization, and their temperature and pressure dependences in the range of 230–290 °C and 2–12 kbar (200–1200 MPa) were determined. The activation energy (E act = 132±4 kJ mol−1) and activation volume (ΔV 0 = −27±1 cm3 mol−1) were calculated. The activation energy of thermal initiation of polymerization was estimated. The reaction scheme based on the assumption about a biradical mechanism of polymerization initiation was proposed.  相似文献   

9.
The thermal effect of a reaction makes the temperature inside the reaction system deviate from a prescribed heating program. To take into account the effect of such temperature deviations on kinetic evaluations, a computational method applicable to an arbitrary variation in temperature has been developed. The method combines the isoconversional principle of evaluating the activation energy with numerical integration of the equation, dα/dt = k[T(t)]f(α), over the actual variation of the temperature with the time, T(t). Details of the numerical algorithm are reported. A model example has been used to verify the reliability of this method as compared to an analogous method which does not account for the deviations of the temperature from a prescribed program. The method has been tested for tolerance for noise in the temperature. © 1997 by John Wiley & Sons, Inc.  相似文献   

10.
The catalytic activity of a polymer-bound palladium Schiff base catalyst was investigated toward the reduction of aryl nitro compounds under ambient temperature and pressure. The dependence of the rate of hydrogenation of o-nitroaniline and o-nitrotoluene on substrate concentration, catalyst concentration and temperature has been determined. Based on the results obtained a plausible mechanism for the hydrogenation reaction is proposed and a rate expression is deduced. The energy and entropy of activation have been evaluated from the kinetic data. The polymer-bound catalyst was found to be better than its homogeneous analog PdCl2(NSBA) [NSBA = N-salicylidene benzylamine] for both stability and reusability. Recycling studies revealed that the catalyst could be used six times without metal leaching or significant loss in activity.  相似文献   

11.
Thermal transesterification of phenylurethane with n-octanol was carried out in DMSO. It was found that the reaction followed first-order kinetics with an average rate constant of 8.630 × 10?5 sec ?1at 140°C. High pressure liquid chromatograph technique was employed to analyze chemical species in the course of the reaction. The reaction obeyed Arrhenius equation closely between 133°C and 155°C with activation energy of 29.6 kcal/mole and entropy of activation of ?8.2 cal/mole deg at 140°C. An intramolecular cyclic intermediate mechanism was proposed for this reaction.  相似文献   

12.
An isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel in the temperature range from 306 to 361 K was investigated. The specific parameters connected with shape of the conversion curves were defined. The activation parameters (E, lnA) of the isothermal dehydration of equilibrium swollen poly(acrylic acid) hydrogel were calculated, using Johnson-Mehl-Avrami (JMA), ‘initial rate’ and ’stationary point’ methods. The reaction models for the investigated dehydration are determined using the ‘model-fitting’ method. It was established that both, the reaction model and activation parameters of the hydrogel dehydration were completely different for the isothermal process than for the non-isothermal one. It was found that the increase in dehydration temperature lead to the changes in isothermal kinetic model for the investigated hydrogel dehydration. It was established that the apparent activation energy (E) of hydrogel dehydration is similar to the value of the molar enthalpy of water evaporation.  相似文献   

13.
《中国化学会会志》2017,64(10):1147-1155
The kinetics of photoinduced electron transfer reaction of methylene blue (MB) and titanium trichloride was investigated in water and different aqueous–alcoholic solvents. The reaction is pseudo‐first order, dependent only on the concentration of titanium trichloride at a fixed concentration of MB. The effect of water and aqueous–alcoholic solvents was studied in the acidic pH range (4–7). It was observed that the quantum yield (ϕ ) of the reaction increased with increase in polarity of the reaction medium. The quantum yield was high under acidic conditions and decreased with further increase in acidity. The addition of ions and increase in temperature increased the rate and quantum yield of the reaction. The absence of any reaction intermediate was confirmed by spectroscopic investigations. A mechanism for the reaction has been proposed in accordance with the kinetics of the reaction. The activation energy (E a) was calculated by the Arrhenius relation. Thermodynamic parameters such as E a, enthalpy change (ΔH ), free energy change (ΔG ), and entropy change (ΔS ) were also evaluated.  相似文献   

14.
Aycan G&#  r 《无机化学学报》2008,24(3):467-473
对硬硼酸钙在硝酸铵水溶液的溶解在间歇式反应器中就搅拌速度、粒径大小、反应温度、固液比和溶液的浓度等参数的影响进行了研究。结果表明溶解速度随温度、硝酸铵水溶液的浓度以及粒径和固液比的增加而增加,但搅拌速度对溶解速度无重要影响。硬硼酸钙在硝酸铵水溶液中可以高达100%。硬硼酸钙的溶解动力学根据多相和均相反应模型进行了检验。实验数据表明有高的活化能,说明基于多相反应动力学模型的溶解速度可表达为:1-(1-X)1/3=3.28 ×104·D-0.653 7·C1.295 8·(S/L)-0.490 9·e-41.40/(RT)·t。反应过程的活化能为41.40 kJ·mol-1。  相似文献   

15.
A. Ortega   《Thermochimica Acta》2008,475(1-2):65-71
A theoretical simulation of the influence of mass-transfer effect on the kinetics of solid–gas reactions has been carried out. The influence of mass-transfer phenomena on the shape of the thermoanalytical curves and on the apparent activation energy, calculated by advanced isoconversional methods (Vyazovkin method) is discussed. The Vyazovkin equation has been adapted to CRTA data and, a modification of this equation, to account for pressure correction term in the reaction rate was achieved. To check the equations developed in this paper, the standard isoconversional procedure has been modified, instead of a set of experiments performed under different heating rates (or reaction rates C in the case of CRTA) for a given conversion we use a set of experiments under different pressure of the gas self-generated in the reaction at one heating rate β (or reaction rate C), respectively.The results obtained allow for trustworthy estimates of the activation energy from advanced isoconversional method in reaction systems whose kinetics are affected by the pressure of the gases self-generated by the reaction. Theoretical considerations are verified on simulated non-isothermal TG, and non-isothermal non-linear controlled rate thermal analysis (CRTA) data. Experimental data of calcite have been used.  相似文献   

16.
The oxidation of isopropyl, benzyl, and n-butyl alcohols to the corresponding aldehydes with tetramethylammonium fluorochromate was studied by spectrophotometry in acetonitrile solutions in the presence of p-toluenesulfonic acid. The reaction kinetics was studied under pseudo-first-order conditions with respect to the oxidizing agent. The Michaelis-Menten kinetics with respect to the substrate was observed, indicating the quasi-equilibrium formation of an oxidizing agent-alcohol complex. The formation constants and the rates of disproportionation of the complexes were determined. The temperature dependences of the reaction rates were studied, and the activation parameters were computed. A reaction scheme consistent with the observed results was proposed.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 453–457, February, 2005.  相似文献   

17.
The kinetics of the thermal cure reaction of Bisphenol A dicyanate (BACY) in presence of various transition metal acetyl acetonates and dibutyl tin dilaurate (DBTDL) was investigated using dynamic differential scanning calorimetry (DSC). The cure reaction involved a pregel stage corresponding to around 60% conversion and a postgel stage beyond that. Influence of nature and concentration of catalysts on the cure characteristics was examined and compared with the uncatalyzed thermal cure reaction. The activation energy (E), preexponential factor (A), and order of reaction (n) were computed by the Coats–Redfern method. A kinetic compensation correction was applied to the data in both stages to normalize the E values. The normalized activation energy showed a systematic decrease with increase in catalyst concentration. The exponential relationship between E and catalyst concentration substantiated the high propensity of the system for catalysis. At fixed concentration of the catalyst, the catalytic efficiency as measured by the decrease in E value showed dependency on the nature of the coordinated metal and stability of the acetyl acetonate complex. Among the acetyl acetonates, for a given oxidation state of the metal ions, E decreased with decrease in the stability of the complex. A linear relationship was found to exist between activation energy and the gel temperature for all the systems. Manganese and iron acetyl acetonates were identified as the most efficient catalysts. In comparison to DBTDL, ferric acetyl acetonate proved to be a more efficient catalyst. The activation parameters computed using the Coats–Redfern method agreed well with the results from two other well known integral equations. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1103–1114, 1999  相似文献   

18.
Abstract

To explore the high value of aluminum ash development and utilization, factors (granularity of aluminum ash, leaching temperature, leaching time, sulfuric acid concentration, and liquid solid ratio) affecting the leaching rate of aluminum were evaluated. The kinetics of the leaching process was also investigated. The results indicate that the leaching rate of aluminum in aluminum ash can reach 88.9% under the following conditions: leaching temperature, 100?°C; leaching time, 120?min; sulfuric acid concentration, 2.5?mol/L; and liquid–solid ratio (mass ratio), 1.3:1. Studies on the leaching dynamics of aluminum in aluminum ash showed that leaching was divided into two stages. At the initial stage (i.e. at the leaching rate x?≤?0.3), the external diffusion resistance and the diffusion resistance of the solid product layer are negligible, and leaching is controlled by chemical reaction at the interface. The apparent activation energy was 5733.25?J/mol. At the leaching rate x?=?0.3–0.9, the leaching rate was controlled by the non-steady diffusion of the liquid film in the porous solid by the fluid reactant H2SO4. The apparent activation energy was 25390.87?J/mol.  相似文献   

19.
The potential energy surface for the insertion of singlet methylene into H2 has been computed on theab initio SCF level as well as with inclusion of electron correlation by means of the CEPA method. The results are compared with those of previous semiempirical,ab initio SCF and CI calculations. The system is a prototype of a reaction where an allowed and a symmetry-forbidden path can compete. The electron correlation energy was found to be very different for different regions of the surface, but did not have much influence on the optimum reaction path. From the computed heat of the reaction, the heat of formation of singlet methylene was estimated to be 101.5 kcal/mol. According to the calculations the reaction does not need any activation energy.  相似文献   

20.
Cure behaviors of diglycidylether of bisphenol A (DGEBA)/trimethylolpropane triglycidylether (TMP) epoxy blends initiated by 1 wt % N‐benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were investigated using DSC and rheometer. This system showed more than one type of reaction and BPH could be excellent thermal latent catalyst without any co‐initiator. The cure activation energy (Ea) obtained from Kissinger method using dynamic DSC data was higher in DGEBA/TMP mixtures than in pure DGEBA. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. The gel time was obtained from the analysis of storage modulus (G′), loss modulus (G″) and damping factor (tanδ). The crosslinking activation energy (Ec) was also determined from the Arrhenius equation based on the gel time and curing temperature. As a result, the crosslinking activation energy showed a similar behavior with that obtained from Kissinger method. And the gel time decreased with increasing TMP content, which could be resulted from increasing the activated sites by trifunctional epoxide groups and decreasing the viscosity of DGEBA/TMP epoxy blend in the presence of TMP. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2114–2123, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号