首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of modification of the electrophilic center from C=O to P=O on reactivity and reaction mechanism has been investigated for aminolysis of Y-substituted phenyl diphenylphosphinates (1a-j) and benzoates (2a-i). The phosphinates 1a-j are less reactive than the benzoates 2a-i. The reactions of 2,4-dinitrophenyl diphenylphosphinate (1a) with alicyclic secondary amines resulted in a linear Br?nsted-type plot with a beta(nuc) value of 0.38, while the corresponding reactions of 2,4-dinitrophenyl benzoate (2a) yielded a curved Br?nsted-type plot. Similarly, a linear Br?nsted-type plot with a beta(lg) value of -0.66 was obtained for the reactions of 1a-j with piperidine, while the corresponding reactions of 2a-i gave a curved Br?nsted-type plot. The linear Br?nsted-type plots for the reactions of 1a-j have been taken as evidence for a concerted mechanism, while the curved Br?nsted-type plots for the reactions of 2a-i have been suggested to indicate a change in the rate-determining step of a stepwise mechanism. The Hammett plot for the reactions of 1b-j exhibited a poor correlation with sigma(-) constants (R(2) = 0.962) but slightly better correlation with sigma(o) (R(2) = 0.986). However, the Yukawa-Tsuno plot for the same reactions resulted in an excellent correlation (R(2) = 0.9993) with an r value of 0.30. The aminolysis of 1a-j has been suggested to proceed through a concerted mechanism with an early transition state on the basis of the small beta(nuc) and small r values.  相似文献   

2.
Toward resolving the current controversy regarding the validity of the α-effect, we have examined the reactions of Y-substituted phenyl methanesulfonates 1a-1l with HOO(-), OH(-), and Z-substituted phenoxides in the gas phase versus solution (H(2)O). Criteria examined in this work are the following: (1) Br?nsted-type and Hammett plots for reactions with HOO(-)and OH(-), (2) comparison of β(lg) values reported previously for the reactions of Y-substituted phenyl benzenesulfonates 2a-2k with HOO(-) (β(lg) = -0.73) and OH(-) (β(lg) = -0.55), and for those of 1a-1l with HOO(-) (β(lg) = -0.69) and OH(-) (β(lg) = -1.35), and (3) Br?nsted-type plot showing extreme deviation of OH(-) for reactions of 2,4-dintrophenyl methanesulfonate 1a with aryloxides, HOO(-), and OH(-), signifying extreme solvation vs different mechanisms. The results reveal significant pitfalls in assessing the validity of current interpretations of the α-effect. The extreme negative deviation by OH(-) must be due, in part, to the difference in their reaction mechanisms. Thus, the apparent dependence of the α-effect on leaving-group basicity found in this study has no significant meaning due to the difference in operating mechanisms. The current results argue in favor of a further criterion, i.e., a consistency in mechanism for the α-nucleophiles and normal nucleophiles.  相似文献   

3.
Phosphatidylinositol-specific phospholipase C cleaves the phosphodiester bond of phosphatidylinositol to form inositol 1,2-cyclic phosphate and diacylglycerol. This enzyme also accepts a variety of alkyl and aryl inositol phosphates as substrates, making it a suitable model enzyme for studying mechanism of phosphoryl transfer by probing the linear free-energy relationship (LFER). In this work, we conducted a study of Br?nsted-type relationship (log k = beta(lg) pK(a) + C) to compare mechanisms of enzymatic and nonenzymatic reactions, confirm the earlier proposed mechanism, and assess further the role of hydrophobicity in the leaving group as a general acid-enabling factor. The observation of the high negative Br?nsted coefficients for both nonenzymatic (beta(lg) = -0.65 to -0.73) and enzymatic cleavage of aryl and nonhydrophobic alkyl inositol phosphates (beta(lg) = -0.58) indicates that these reactions involve only weak general acid catalysis. In contrast, the enzymatic cleavage of hydrophobic alkyl inositol phosphates showed low negative Br?nsted coefficient (beta(lg) = -0.12), indicating a small amount of the negative charge on the leaving group and efficient general acid catalysis. Overall, our results firmly support the previously postulated mechanism where hydrophobic interactions between the enzyme and remote parts of the leaving group induce an unprecedented negative-charge stabilization on the leaving group in the transition state.  相似文献   

4.
The reactions of a homogeneous series of phenols with bis(4-nitrophenyl) carbonate (BNPC), bis(4-nitrophenyl) thionocarbonate (BNPTOC), and methyl 4-nitrophenyl thionocarbonate (MNPTOC) are subjected to a kinetic investigation in water, at 25.0 degrees C and ionic strength of 0.2 M (KCl). Under excess of phenol over the substrate, all the reactions obey pseudo-first-order kinetics and are first order in phenoxide anion. The reactions of BNPC show a linear Br?nsted-type plot with slope beta = 0.66, consistent with a concerted mechanism (one step). In contrast, those of BNPTOC and MNPTOC show biphasic Br?nsted-type plots with slopes beta = 0.30 and 0.44, respectively, at high pK(a), and beta = 1.25 and 1.60, respectively, at low pK(a), consistent with stepwise mechanisms. For the reactions of both thionocarbonates, the pK(a) value at the center of the Br?nsted plot (pK(a)(0)) is 7.1, which corresponds to the pK(a) of 4-nitrophenol. This confirms that the phenolyses of the thionocarbonates are stepwise processes, with the formation of an anionic tetrahedral intermediate. By the comparison of the kinetics and mechanisms of the title reactions with similar reactions, the following conclusions can be drawn: (i) Substitution of S(-) by O(-) in an anionic tetrahedral intermediate (T(-)) destabilizes it. (ii) The change of MeO by 4-nitrophenoxy in T(-) results in an increase of both the rate constant and equilibrium constant, for the formation of T(-), and also in an enlargement of the rate coefficient for the expulsion of 4-nitrophenoxide from T(-). (iii) Substitution of an amino group in a tetrahedral intermediate by ArO destabilizes it. (iv) Secondary alicyclic amines and other amines show greater reactivity toward MNPTOC than isobasic phenoxide anions.  相似文献   

5.
The reaction catalyzed by the protein phosphatase-1 (PP1) has been examined by linear free energy relationships and kinetic isotope effects. With the substrate 4-nitrophenyl phosphate (4NPP), the reaction exhibits a bell-shaped pH-rate profile for kcat/KM indicative of catalysis by both acidic and basic residues, with kinetic pKa values of 6.0 and 7.2. The enzymatic hydrolysis of a series of aryl monoester substrates yields a Br?nsted beta(lg) of -0.32, considerably less negative than that of the uncatalyzed hydrolysis of monoester dianions (-1.23). Kinetic isotope effects in the leaving group with the substrate 4NPP are (18)(V/K) bridge = 1.0170 and (15)(V/K) = 1.0010, which, compared against other enzymatic KIEs with and without general acid catalysis, are consistent with a loose transition state with partial neutralization of the leaving group. PP1 also efficiently catalyzes the hydrolysis of 4-nitrophenyl methylphosphonate (4NPMP). The enzymatic hydrolysis of a series of aryl methylphosphonate substrates yields a Br?nsted beta(lg) of -0.30, smaller than the alkaline hydrolysis (-0.69) and similar to the beta(lg) measured for monoester substrates, indicative of similar transition states. The KIEs and the beta(lg) data point to a transition state for the alkaline hydrolysis of 4NPMP that is similar to that of diesters with the same leaving group. For the enzymatic reaction of 4NPMP, the KIEs are indicative of a transition state that is somewhat looser than the alkaline hydrolysis reaction and similar to the PP1-catalyzed monoester reaction. The data cumulatively point to enzymatic transition states for aryl phosphate monoester and aryl methylphosphonate hydrolysis reactions that are much more similar to one another than the nonenzymatic hydrolysis reactions of the two substrates.  相似文献   

6.
The reactions of a series of phenols with O-methyl O-2,4-dinitrophenyl thiocarbonate (MDNPTOC), O-phenyl O-2,4-dinitrophenyl thiocarbonate (PDNPTOC), and O-ethyl 2,4-dinitrophenyl dithiocarbonate (EDNPDTC) are studied kinetically in water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). All reactions show pseudo-first-order kinetics under an excess of phenol over the substrate, and are first order in phenoxide anion. The reactions of EDNPDTC show a linear Br?nsted-type plot of slope beta = 0.67, suggesting a concerted mechanism. On the other hand, the phenolyses of MDNPTOC and PDNPTOC exhibit linear Br?nsted-type plots of slopes beta = 0.27 and 0.28, respectively, consistent with stepwise mechanisms where the formation of an anionic tetrahedral intermediate (T(-)) is rate determining. By comparison of the kinetics and mechanisms of the reactions under investigation with similar reactions, the following conclusions arise: (i). Substitution of S(-) by O(-) in the intermediate T(-) destabilizes this species. (ii). The change of DNPO in T(-) to DNPS also destabilizes this intermediate. (iii). Substitution of MeO by PhO as the nonleaving group of the substrate does not affect the kinetics, probably by a compensation of electronic and steric effects. (iv). The change of an amino group in a tetrahedral intermediate to a phenoxy group destabilizes the intermediate.  相似文献   

7.
The reactions of 4-nitrophenyl, 2,4-dinitrophenyl, and 2,4,6-trinitrophenyl methyl carbonates (NPC, DNPC, and TNPC, respectively) with substituted phenoxide ions are subjected to a kinetic study in water at 25.0 degrees C, ionic strength 0.2 M (KCl). Production of the leaving groups (the nitro derivatives) is followed spectrophotometrically. Under excess of the phenoxide ions pseudo-first-order rate coefficients (k(obsd)) are found throughout. Plots of k(obsd) vs substituted phenoxide concentration at constant pH are linear, with the slope (k(N)) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the phenols) are linear with slopes beta = 0.67, 0.48, and 0.52 for the phenolysis of NPC, DNPC, and TNPC, respectively. The magnitudes of these Br?nsted slopes are consistent with a concerted mechanism. In the particular case of the phenolysis of NPC the expected hypothetical curvature center of the Br?nsted plot for a stepwise mechanism should be pK(a)(0) = 7.1 (the pK(a) of 4-nitrophenol). This curvature does not appear within the pK(a) range of the substituted phenols studied (5.3--10.3), indicating that these reactions are concerted. The phenolysis of DNPC and TNPC should also be concerted in view of the even more unstable tetrahedral intermediates that would be formed if the reactions were stepwise. The reactions of the same substrates with pyridines are stepwise, which means that substitution of a pyridine moiety in a tetrahedral intermediate by a phenoxy group destabilizes the intermediate perhaps to the point of nonexistence. The k(N) values for the title reactions are larger than those for the concerted phenolysis of the corresponding ethyl S-aryl thiolcarbonates. The k(N) values found in the present reactions are subjected to a dual regression analysis as a function of the pK(a), of both the nucleophile and leaving group, the coefficients being beta(N) = 0.5 and beta(lg) = -0.3, respectively. These coefficients are consistent with a concerted mechanism.  相似文献   

8.
The title reactions are subjected to a kinetic study in water, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). By following the reactions spectrophotometrically two consecutive reactions are observed: the first is formation of the corresponding thionocarbamates (1-(aryloxythiocarbonyl)pyridinium cations) and the second is their decomposition to the corresponding phenol and pyridine, and COS. Pseudo-first-order rate coefficients (k(obsd1) and k(obsd2), respectively) are found under excess amine. Plots of k(obsd1) vs free pyridine concentration at constant pH are linear, with the slope (k(N)) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acids of the pyridines) are linear with slopes beta = 0.07 and 0.11 for the reactions of phenyl and 4-nitrophenyl chlorothionoformates, respectively. These Br?nsted slopes are in agreement with those found in other stepwise reactions of the same pyridines in water, where the formation of a tetrahedral intermediate is the rate-determining step. In contrast to the stepwise mechanism of the title reactions that for the reactions of the same substrates with phenols is concerted, which means that substitution of a pyridino moiety in a tetrahedral intermediate by a phenoxy group destabilizes the intermediate. The second reaction corresponds to the pyridine-catalyzed hydrolysis of the corresponding 1-(aryloxythiocarbonyl)pyridinium cation. Plots of k(obsd2) vs free pyridine concentration at constant pH are linear, with the slope (k(H)) independent of pH. The Br?nsted plots for k(H) are linear with slopes beta = 0.19 and 0.26 for the reactions of the phenyl and 4-nitrophenyl derivatives, respectively. These low values are explained by the fact that as pK(a) increases the effect of a better pyridine catalyst is compensated by a worse leaving pyridine from the corresponding thionocarbamate  相似文献   

9.
The reactions 4-methylphenyl 4-nitrophenyl carbonate (MPNPC), 4-chlorophenyl 4-nitrophenyl carbonate (CIPNPC), 4-methylphenyl 2,4-dinitrophenyl carbonate (MPDNPC), and 4-chlorophenyl 2,4-dinitrophenyl carbonate (CIPDNPC) with a homogeneous series of phenoxide anions are subjected to a kinetic investigation in aqueous solution (25.0 degrees C, ionic strength 0.2 M (KCI)). Under an excess of phenoxide with respect to the substrate, all of these reactions obey pseudo-first-order kinetics and are first order in phenoxide. The Br?nsted-type plots for the nucleophilic rate constants (k(N)) are linear, with slopes beta = 0.48 (MPNPC), 0.67 (ClPNPC), 0.41 (MPDNPC), and 0.32 (ClPDNPC). The magnitude of these slopes and the absence of a curvature in the Br?nsted plot at pK(a) = 7.1 for the CIPNPC reactions are consistent with concerted mechanisms (one step). The carbonates MPDNPC and ClPDNPC are more reactive than MPNPC and CIPNPC, respectively, toward phenoxide nucleophiles. This can be explained by the presence of a second nitro group in the nucleofuge of the dinitro derivatives, which (i) leaves their carbonyl carbon more positively charged, making them better electrophiles, and (ii) makes 2,4-dinitrophenoxide a better leaving group than 4-nitrophenoxide. The 4-chloro derivatives are more reactive than the corresponding 4-methyl derivatives. This should be due to the greater electron withdrawal of 4-chloro than 4-methyl, which makes the former carbonyl more electrophilic. Comparison of the concerted phenolysis of MPNPC with the stepwise reactions of secondary alicyclic amines with the same substrate indicates that substitution of a secondary alicyclic amine group in a zwitterionic tetrahedral intermediate by a phenoxy group greatly destabilizes the intermediate. An equation is deduced for log k(N) in terms of the basicity of the nucleophile, the nonleaving moiety, and the leaving group. This equation shows that for these reactions, the sensitivity of log k(N) to the basicity of the nonleaving moiety (beta(nlg) = -0.27) is very similar to that of the nucleofuge (beta(lg) = -0.25).  相似文献   

10.
The reactions of secondary alicyclic amines with 2,4,6-trinitrophenyl methyl carbonate (TNPMC) and 2,4,6-trinitrophenyl acetate (TNPA) are subjected to a kinetic study in aqueous solution, 25.0 degrees C, ionic strength 0.2 (KCl). The reactions are studied by following spectrophotometrically (360 nm) the release of the 2,4,6-trinitrophenoxide anion. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs [amine] are linear, with the slope (kN) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acid of the amines) are linear, with slopes beta = 0.41 and beta = 0.36 for the reactions of TNPA and TNPMC, respectively. The predicted breaks of the Br?nsted plots for stepwise mechanisms are pK(a)0 = 6.8 and 7.3, respectively. The lack of Br?nsted breaks for these reactions and the values of the Br?nsted slopes are consistent with concerted mechanisms. By comparison of the reactions under investigation among them and with similar aminolysis and pyridinolysis, the following conclusions can be drawn: (i) Secondary alicyclic amines react with TNPA and TNPMC by concerted mechanisms. (ii) TNPA is more reactive toward these amines than TNPMC due to the greater electron release of MeO from the latter substrate. (iii) The change of 2,4-dinitrophenoxy to 2,4,6-trinitrophenoxy in the zwitterionic tetrahedral intermediate (T+/-) formed in the reactions of the title amines with 2,4-dinitrophenyl acetate greatly destabilizes T+/-. (iv) Secondary alicyclic amines destabilize T+/- relative to pyridines. (v) The intermediate T+/- formed in the reactions of the title amines with S-(2,4,6-trinitrophenyl) acetate is greatly destabilized by substitution of S-(2,4,6-trinitrophenyl) by O-(2,4,6-trinitrophenyl) as the leaving group.  相似文献   

11.
Elimination reactions of (4'-ClC6H4)2CHCO2C6H3-2-X-4-NO2 promoted by R2NH-R2NH2+ in 70 mol% MeCN (aq.) have been studied kinetically. The reactions are second-order and exhibit Br?nsted beta = 0.44-0.86 and /beta(lg)/ = 0.41-0.71. The Br?nsted beta decreased with a poorer leaving group and /beta(lg)/ increased with a weaker base. The results are consistent with an E2 mechanism. When X=H, the reaction proceeded by the concurrent E2 and Elcb mechanism.  相似文献   

12.
Second-order rate constants have been measured for the reactions of 2,4-dinitrophenyl X-substituted benzoates (1a-f) with a series of primary amines in 80 mol % H(2)O/20 mol % DMSO at 25.0 +/- 0.1 degrees C. The Br?nsted-type plot for the reactions of 1d with primary amines is biphasic with slopes beta(1) = 0.36 at the high pK(a) region and beta(2) = 0.78 at the low pK(a) region and the curvature center at pK(a) degrees = 9.2, indicating that the reaction proceeds through an addition intermediate with a change in the rate-determining step as the basicity of amines increases. The corresponding Br?nsted-type plot for the reactions with secondary amines is also biphasic with beta(1) = 0.34, beta(2) = 0.74, and pK(a) degrees = 9.1, indicating that the effect of amine nature on the reaction mechanism and pK(a) degrees is insignificant. However, primary amines have been found to be less reactive than isobasic secondary amines. The microscopic rate constants associated with the aminolysis have revealed that the smaller k(1) for the reactions with primary amines is fully responsible for their lower reactivity. The electron-donating substituent in the nonleaving group exhibits a negative deviation from the Hammett plots for the reactions of 1a-f with primary and secondary amines, while the corresponding Yukawa-Tsuno plots are linear. The negative deviation has been ascribed to stabilization of the ground state of the substrate through resonance interaction between the electron-donating substituent and the carbonyl functionality.  相似文献   

13.
A kinetic study is reported for reactions of 4-nitrophenyl benzoate (1c) and O-4-nitrophenyl X-substituted thionobenzoates (2a-e) with a series of pyridines in 80 mol % H2O/20 mol % dimethyl sulfoxide (DMSO) at 25.0 +/- 0.1 degrees C. O-4-Nitrophenyl thionobenzoate (2c) is more reactive than its oxygen analogue 1c toward all the pyridines studied. The Br?nsted-type plot is linear with beta(nuc)=1.06 for reactions of 1c but curved for the corresponding reactions of 2c with beta(nu)c decreasing from 1.38 to 0.38 as the pyridine basicity increases, indicating that the reaction mechanism is also influenced on changing the electrophilic center from C=O to C=S. The curvature center of the curved Br?nsted-type plots (defined as pK(a)(o)) occurs at pKa = 9.3 regardless of the electronic nature of the substituent X in the nonleaving group. The Hammett plot for reactions of 2a-e with 4-aminopyridine is nonlinear, i.e., the substrates having an electron-donating substituent exhibit negative deviations from the Hammett plot. However, the Yukawa-Tsuno plot for the same reactions exhibits good linear correlation, indicating that the negative deviations shown by these substrates arise from stabilization of the ground state through resonance interaction between the electron-donating substituent X and the C=S bond.  相似文献   

14.
The reactions of S-4-nitrophenyl 4-X-substituted thiobenzoates (X = H, Cl, and NO(2): 1, 2, and 3, respectively) with a series of secondary alicyclic amines (SAA) were subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). The reactions were followed spectrophotometrically by monitoring the release of 4-nitrobenzenethiolate anion at 420-425 nm. Under excess amine, pseudo-first-order rate constants (k(obsd)) are obtained for all reactions. The plots of k(obsd) vs [SAA] at constant pH are linear with the slope (k(N)) independent of pH. The statistically corrected Br?nsted-type plots (log k(N)/q vs pK(a) + log p/q) for the reactions of 1 and 2 are nonlinear with slopes at high pK(a), beta(1) = 0.27 and 0.10, respectively, and slopes at low pK(a), beta(2) = 0.86 and 0.84, respectively. The Br?nsted curvature is centered at pK(a) (pK(a)(0)) 10.0 and 10.4, respectively. The reactions of SAA with 3 exhibit a linear Br?nsted-type plot of slope 0.81. These results are consistent with a stepwise mechanism, through a zwitterionic tetrahedral intermediate (T(+/-)). For the reactions of 1 and 2, there is a change in rate-determining step with amine basicity, from T(+/-) breakdown to products at low pK(a), to T(+/-) formation at high pK(a). For the reactions of 3, breakdown to products of T(+/-) is rate limiting for all the SAA series (pK(a)(0) > 11). The increasing pK(a)(0) value as the substituent in the acyl group becomes more electron withdrawing is attributed to an increasing nucleofugality of SAA from T(+/-). The greater pK(a)(0) value for the reactions of SAA with 1, relative to that found in the pyridinolysis of 2,4-dinitrophenyl benzoate (pK(a)(0) = 9.5), is explained by the greater nucleofugality from T(+/-) of the former amines, compared to isobasic pyridines, and the greater leaving ability from T(+/-) of 2,4-dinitrophenoxide relative to 4-nitrobenzenethiolate.  相似文献   

15.
Reactions of 4-methylphenyl 4-nitrophenyl carbonate (MPNPC) and 4-chlorophenyl 4-nitrophenyl carbonate (ClPNPC) with a series of quinuclidines (QUIN) and the latter carbonate with a series of secondary alicyclic amines (SAA) are subjected to a kinetic investigation in 44 wt % ethanol-water, at 25.0 degrees C and an ionic strength of 0.2 M. The reactions were followed spectrophotometrically at 330 or 400 nm (4-nitrophenol or 4-nitrophenoxide anion appearance, respectively). Under excess amine, pseudo-first-order rate coefficients (k(obsd)) are found. For all these reactions, plots of k(obsd) vs free amine concentration at constant pH are linear, the slope (k(N)) being independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acids of the amines) for the reactions of the series of QUIN with MPNPC and ClPNPC are linear with slopes (beta(N)) 0.88 and 0.87, respectively, which are explained by a stepwise process where breakdown of a zwitterionic tetrahedral intermediate (T(+/-)) to products is rate limiting. The Br?nsted-type plot for the reactions of the series of SAA with ClPNPC is biphasic with slopes beta(1) = 0.2 (high pK(a) region) and beta(2) = 0.9 (low pK(a) region) and a curvature center at pK(a)(0) = 10.6. This plot is in accordance with a stepwise mechanism through T(+/-) and a change in the rate-determining step, from T(+/-) breakdown to T(+/-) formation as the basicity of the SAA increases. Two conclusions arise from these results: (i) QUIN are better leaving groups from T(+/-) than isobasic SAA, and (ii) the non-leaving group effect on k(N) for these reactions is small, since beta(nlg) ranges from -0.2 to - 0.3. From these values, it is deduced that ClPNPC is ca. 70% more reactive than MPNPC toward SAA and QUIN, when expulsion of the leaving group from T(+/-) is the rate determining step.  相似文献   

16.
The reactions of methyl 4-nitrophenyl carbonate (MNPC) with a series of secondary alicyclic amines (SAA) and quinuclidines (QUIN), methyl 2,4-dinitrophenyl carbonate (MDNPC) with QUIN and 1-(2-hydroxyethyl)piperazinium ion (HPA), and phenyl 2,4-dinitrophenyl carbonate (PDNPC) with SAA are subjected to a kinetic investigation in aqueous solution, at 25.0 degrees C and an ionic strength of 0.2 M. By following spectrophotometrically the nucleofuge release (330-400 nm) under amine excess, pseudo-first-order rate coefficients (k(obsd)) are obtained. Plots of k(obsd) vs [amine] at constant pH are linear, with the slope (k(N)) being pH independent. The Br?nsted-type plot (log k(N) vs amine pK(a)) for the reactions of SAA with MNPC is biphasic with slopes beta(1) = 0.3 (high pK(a) region) and beta(2) = 1.0 (low pK(a) region) and a curvature center at pK(a)(0) = 9.3. This plot is consistent with a stepwise mechanism through a zwitterionic tetrahedral intermediate (T(+/-)) and a change in the rate-determining step with SAA basicity. The Br?nsted plot for the quinuclidinolysis of MNPC is linear with slope beta(N) = 0.86, in line with a stepwise process where breakdown of T(+/-) to products is rate limiting. A previous work on the reactions of SAA with MDNPC was revised by including the reaction of HPA. The Br?nsted plots for the reactions of QUIN and SAA with MDNPC and SAA with PDNPC are linear with slopes beta = 0.51, 0.48, and 0.39, respectively, consistent with concerted mechanisms. Since quinuclidines are better leaving groups from T(+/-) than isobasic SAA, yielding a less stable T(+/-), it seems doubtful that the quinuclidinolysis of PDNPC is stepwise, as reported.  相似文献   

17.
[reaction: see text] Second-order rate constants (kN) have been measured for the Michael-type reaction of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of primary amines in H2O at 25.0 +/- 0.1 degree C. A linear Br?nsted-type plot with a small beta(nuc) value (beta(nuc) = 0.30) has been obtained for the reactions of 1-phenyl-2-propyn-1-one (2c) with non-alpha-nucleophile amines. Hydrazine is more reactive than other primary amines of similar basicity (e.g., glycylglycine and glycine ethyl ester) and results in a positive deviation from the linear Br?nsted-type plot. The reactions of 2a-f with hydrazine exhibit a linear Hammett plot, while those with non-alpha-nucleophile amines give linear Yukawa-Tsuno plots, indicating that the electronic nature of the substituent X does not affect the reaction mechanism. The alpha-effect increases as the substituent X in the phenyl ring of 2a-f becomes a stronger electron-donating group. However, the magnitude of the alpha-effect for the reactions of 2a-f is small (e.g., kN(hydrazine)/kN(glycylglycine) = 4.6-13) regardless of the electronic nature of the substituent X. The small beta(nuc) has been suggested to be responsible for the small alpha-effect. A solvent kinetic isotope effect (e.g., kN(H2O)/kN(D2O) = 1.86) was observed for the reaction with hydrazine but absent for the reactions with non-alpha-nucleophile amines. The reactions with hydrazine and other primary amines have been suggested to proceed through a five-membered intramolecular H-bonding structure VI and a six-membered intermolecular H-bonding structure VII, respectively. The transition state modeled on VI can account for the substituent dependent alpha-effect and the difference in the solvent kinetic isotope effect exhibited by the reactions with hydrazine and other primary amines. It has been proposed that the beta(nuc) value is more important than the hybridization type of the reaction site to determine the magnitude of the alpha-effect.  相似文献   

18.
A kinetic study is reported for nucleophilic substitution reactions of 4-nitrophenyl phenyl carbonate (5) and 4-nitrophenyl phenyl thionocarbonate (6) with a series of primary amines. The thiono compound 6 is less reactive than its oxygen analogue 5 toward strongly basic amines but is more reactive toward weakly basic CF3CH2NH2. The Br?nsted-type plots obtained from the aminolyses of 5 and 6 are curved downwardly. The reactions are proposed to proceed through a stepwise mechanism with a change in the RDS on the basis of the curved Br?nsted-type plots. The microscopic rate constants (k(1) and k(2)/k(-1) ratio) associated with the current aminolyses are consistent with the proposed reaction mechanism. The replacement of the C=O bond in 5 by a polarizable C=S group results in a decrease in the k(1) value but an increase in the k(2)/k(-1) ratio. Besides, such a modification of the electrophilic center causes a decrease in pKa degrees , defined as the pK(a) at the curvature center of curved Br?nsted-type plots, but does not alter the reaction mechanism. The larger k(2)/k(-1) ratio for the reactions of 6 compared to those of 5 is proposed to be responsible for the decreased pK(a) degrees value.  相似文献   

19.
Reactions of O-ethyl 2,4-dinitrophenyl dithiocarbonate (EDNPDTC), O-ethyl 2,4,6-trinitrophenyl dithiocarbonate (ETNPDTC), and O-methyl O-(2,4-dinitrophenyl) thiocarbonate (MDNPTOC) with a series of benzenethiolate anions in aqueous solution, at 25.0 degrees C and an ionic strength of 0.2 M (KCl), are subjected to a kinetic investigation. Under excess benzenethiolate, these reactions obey pseudo-first-order kinetics and are first order in benzenethiolate. Nonetheless, similar reactant concentrations were used in the reactions of 4-nitrobenzenethiolate anion with the ethyl trinitrophenyl ester (ETNPDTC), which showed overall second-order kinetics. The nucleophilic rate constants (k(N)) are pH independent, except those for the reactions of ETNPDTC with the X-benzenethiolates with X = H, 4-Cl, and 3-Cl, which increase as pH decreases. The Br?nsted-type plots (log k(N) vs pK(a) of benzenethiols) are linear with slopes beta = 0.66 for the reactions of both ethyl dinitrophenyl ester (EDNPDTC) and ethyl trinitrophenyl ester (ETNPDTC) and beta = 0.58 for those of the thiocarbonate ester (MDNPTOC). For the benzenethiolysis of MDNPTOC and EDNPDTC, no breaks were found in the Br?nsted-type plots at pK(a) 4.1 and 3.4, respectively, consistent with concerted mechanisms. Benzenethiolysis of the ethyl trinitrophenyl ester (ETNPDTC) should also be concerted in view of the even more unstable tetrahedral "intermediate" that would have been formed had this reaction been stepwise. ETNPDTC is more reactive toward benzenethiolate anions than EDNPDTC due to the better leaving group involved in the former substrate. The k(N) values found for the reactions of EDNPDTC with benzenethiolates are larger than those obtained for the concerted reactions of the same substrate with isobasic phenoxide anions. This is explained by Pearson's "hard and soft acids and bases" principle. The concerted mechanism for the benzenethiolysis of MDNPTOC, in contrast to the stepwise mechanism found for the phenolysis of this substrate, is attributed to the greater kinetic instability of the hypothetical tetrahedral "intermediate" formed in the former reaction, due to the greater nucleofugality of ArS(-) compared with an isobasic ArO(-). Benzenethiolates are more reactive toward MDNPTOC and EDNPDTC than the corresponding carbonate and thiolcarbonate, respectively. This is also in accordance with the HSAB principle, since benzenthiolates are relatively soft bases that prefer to bind to a relatively soft thiocarbonyl center rather than a relatively hard carbonyl center.  相似文献   

20.
[reaction: see text] The reactions of secondary alicyclic (SA) amines and quinuclidines (QUI) with 4-nitrophenyl and 2,4-dinitrophenyl S-methyl thiocarbonates (1 and 2, respectively) and those of SA amines with 2,3,4,5,6-pentafluorophenyl S-methyl thiocarbonate (3) are subjected to a kinetic study in aqueous solution, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). The reactions of thiocarbonates 1, 2, and 3 were followed spectrophotometrically at 400, 360, and 220 nm, respectively. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs amine concentration at constant pH are linear, with the slope (kN) independent of pH. The Br?nsted-type plots (log kN vs pKa of aminium ions) are linear for all the reactions, with slopes beta = 0.9 for those of 1 with SA amines and QUI, beta = 0.36 and 0.57 for the reactions of 2 with SA amines and QUI, respectively, and beta = 0.39 for the reactions of SA amines with 3. The magnitude of the slopes indicates that both aminolyses of 1 are governed by stepwise mechanisms, through a zwitterionic tetrahedral intermediate (T+/-), where expulsion of the nucleofuge from T+/- is the rate-determining step. The values of the Br?nsted slopes found for the aminolyses of thiocarbonates 2 and 3 suggest that these reactions are concerted. By comparison of the reactions under investigation between them and with similar aminolyses, the following conclusions arise: (i) Thiocarbonate 2 is more reactive than 1 toward the two amine series. (ii) The change of the nonleaving group from MeO in 4-nitrophenyl methyl carbonate to MeS in thiocarbonate 1 results in lower kN values. (iii) The greater reactivity of this carbonate than thiocarbonate 1 is attributed to steric hindrance of the MeS group, compared to MeO toward amine attack. (iv) The change of a pyridine to an isobasic SA amine or QUI destabilizes the T+/- intermediate formed in the aminolyses of 2. (v) The change of 4-nitrophenoxy to 2,3,4,5,6-pentafluorphenoxy or 2,4-dinitrophenoxy as the leaving group destabilizes the tetrahedral intermediate formed in the reactions with SA amines, changing the mechanism from a stepwise process to a concerted reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号