首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of 2-methyl-4-benzyl-5(4H)oxazolone (MBA) in a mixture of water and MeCN has been studied — both the spontaneous reaction and that catalyzed by a complex of Cu(II) with (S)-2-[(N-benzylpropyl)amino]benzaldoxime (1). It has been shown that the complex 1 is an effective catalyst for the hydrolysis of MBA (chymotrypsin does not catalyze MBA hydrolysis). The mechanism of MBA hydrolysis catalyzed by this complex includes the formation of a mixed catalyst—substrate complex in which the MBA is coordinated with the metal ion through the N 3 atom. It is suggested that the oxygen atom of the ionized oxime group in such a complex attacks the imine C 2 atom of the MBA intramolecularly; this is the rate-determining stage. The change in the order of hydrolysis with respect to the catalyst from 1 to 1/2 when the concentration of 1 is increased indicates that the complex catalyst exists in aqueous solution in two forms, dimeric and monomeric, which are in equilibrium, and only the monomeric form of the complex is responsible for the catalysis. With an excess of the substrate we observe inhibition of the MBA hydrolysis — possibly an indirect indication of participation in the transition state by a water molecule coordinated in an apical position of the complex, which is displaced by excess substrate.A. N. Nesmeyanov Institute of Heteroorganic Compounds, Russian Academy of Sciences, Moscow 117813. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 536–546, March, 1992.  相似文献   

2.
In this study, Co(II), Ni(II) and Cu(II) complexes of 3-[(2,4-dinitrophenyl)hydrazono]butane-2-one oxime were synthesized and characterized by means of IR, UV-Vis, 1H NMR spectroscopic techniques, magnetic measurements, and elemental analyses. The ligand (HL) behaves as a monoanionic bidentate ligand coordinating via azomethine nitrogen of the hydrazone and the oxime oxygen with the displacement of a hydrogen atom from the oxime group. The text was submitted by the authors in English.  相似文献   

3.
Copper(II) complexes of the ligands N2-[(R)-2-hydroxypropyl]- and N2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide performed chiral separation of N-dansyl-protected and unmodified amino acids in HPLC (reversed phase). With the aim of investigating which species are potentially involved in the discrimination mechanism, the two ligands were synthesized and their complexation equilibria with Cu2+ studied by potentiometry and spectrophotometry in aqueous solution up to pH 11.7. The formation constants of the species observed, [CuL]2+, [CuL2]2+, [CuLH–1]+, [CuL2H–1]+, [CuL2H–2], and [CuL2H–3]?, were quite similar for both compounds and were compared to those of (S)-phenylalaninamide. Most probably, in [CuL2H–3]? the ligands behave as terdentate, with the deprotonated OH group occupying an apical position.  相似文献   

4.
Two new cadmium(II) complexes,[Cd2L2Cl4] (1) and [CdL2](ClO4)2 (2) {L = 8-[(pyridylmethyl)amino]-quinoline}, have been synthesized and characterized by X-ray single-crystal structure analysis. Each neutral L is a tridentate terminal ligand. Complex 2 is mononuclear compound whereas 1 is a di- chloride-bridged dinuclear compound. Interactions of the complexes with CT- DNA have been investigated by UV absorption, fluorescence and circular dichroism spectroscopy. Results show that the complexes bind to CT-DNA with moderate intercalation.  相似文献   

5.
Two new ligands, 2-[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenol (HL) and 2-[(bis(2-pyridylmethyl)amino)methyl]-4-methyl-6-(methylthio)phenol (HSL), were synthesized and were used to prepare the trinuclear copper(II) complex {[CuSL(Cl)]2Cu}(PF6)2.H2O (1) and the corresponding binuclear complexes [Cu2(SL)2](PF6)2 (2) and [Cu2L2](PF6)2 (3). The crystal structure of 1 shows two different coordination environments: two square base pyramidal centers (Cu1 and Cu1a, related by a C2 axes), acting as ligands of a distorted square planar copper center (Cu2) by means of the sulfur atom of the SCH3 substituent and the bridging phenoxo oxygen atom of the ligand (Cu2-S = 2.294 A). Compounds 2 and 3 show two equivalent distorted square base pyramidal copper(II) centers, bridged in an axial-equatorial fashion by two phenoxo groups, thus defining an asymmetric Cu2O2 core. A long copper-sulfur distance measured in 2 (2.9261(18) A) suggests a weak bonding interaction. This interaction induces a torsion angle between the methylthio group and the phenoxo plane resulting in a dihedral angle of 41.4(5) degrees. A still larger distortion is observed in 1 with a dihedral angle of 74.0(6) degrees. DFT calculations for 1 gave a ferromagnetic exchange between first neighbors interaction, the calculated J value for this interaction being +11.7 cm-1. In addition, an antiferromagnetic exchange for 1 was obtained for the second neighbor interaction with a J value of -0.05 cm-1. The Bleaney-Bowers equation was used to fit the experimental magnetic susceptibility data for 2 and 3; the best fit was obtained with J values of +3.4 and -16.7 cm-1, respectively. DFT calculations for 2 and 3 confirm the nature and the values of the J constants obtained by the fit of the experimental data. ESR and magnetic studies on the reported compounds show a weak exchange interaction between the copper(II) centers. The low values obtained for the coupling constants can be explained in terms of a poor overlap between the magnetic orbitals, due to the axial-equatorial phenoxo bridging mode observed in these complexes.  相似文献   

6.
A series of chiral Schiff base ligands 1–4, derived from (1R,2S)-(+)-cis-1-amino-2-indanol and other chiral amines with substituted salycilaldehydes were synthesized and transformed to the corresponding Cu(II) complexes. Molecular structures of six Cu(II) complexes were determined by X-ray crystallographic studies. The structures show the metal ion in a distorted square planar geometry with dimeric or monomeric structures, depending on the ligand denticity. The potential use of these complexes in asymmetric Cyclopropanation was explored.  相似文献   

7.
8.
A new dioxime ligand, (2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}-pyridin-2-yl)imino]butan-2-one oxime, (H2Pymdo) (3) has been synthesized in H2O by reacting 2,3-butenedione monoxime (2) with 2,6-diaminopyridine. Mono-, di- and tri-nuclear copper(II) complexes of the dioxime ligand (H2Pymdo) and/or 1,10-phenanthroline have been prepared. The dioxime ligand (H2Pymdo) and its copper(II) complexes were characterized by 1H-n.m.r., 13C-n.m.r. and elemental analyses, magnetic moments, i.r. and mass spectral studies. The mononuclear copper(II) complex of H2Pymdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The trinuclear copper(II) complex (6) was formed by coordination of the third Cu(II) ion with dianionic oxygen atoms of each of two molecules of the mononuclear copper(II) complexes. The data support the proposed structure of H2Pymdo and its Cu(II) complexes.  相似文献   

9.
A new copper(II) complex, [CuL(μ 1,1-N3)] n (1), and a new zinc(II) complex, [ZnL(μ 2-acetato-O, O′)2] n (2) (HL = 2-bromo-4-chloro-6-[(2-dimethylaminoethylimino)methyl]phenol), were prepared and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Complex 1 is an end-on azide-bridged polynuclear copper(II) complex and 2 is a synanti bidentate acetate-bridged polynuclear zinc(II) complex. Each metal in the complex is five-coordinate with square-pyramidal geometry. Complex 1 shows good urease inhibitory properties, while 2 does not.  相似文献   

10.
Five new complexes of copper(II) having the general formula [CuL(OAc)], where HL and OAc represent the N,N,O-donor 4-R-2-[(2-pyridin-2-yl-ethylimino)-methyl]-phenol (R = H, Br, NO2 and OMe) or 5-methoxy-2-[(2-pyridin-2-yl-ethylimino)-methyl]-phenol and acetate, respectively have been reported. The complexes have been synthesized in 52–80% yields by reacting one mole equivalent each of Cu(OAc)2·H2O, 2-(2-aminoethyl)pyridine and the appropriate substituted salicylaldehyde in methanol. The solid state effective magnetic moments of the complexes at 298 K are within 1.79–1.97 μB. In solution, all the complexes are electrically non-conducting. The electronic spectra of these species display a weak ligand-field band within 640–615 nm and several strong charge transfer bands in the range 410–235 nm. The complexes are EPR active. The frozen (120 K) solution spectral parameters are g|| = 2.22–2.23, A|| = 189–191 × 10−4 cm−1, gg = 2.06–2.07, and A(N)A(N) = 10–16 × 10−4 cm−1. X-ray structures show that the ligand L coordinates the metal center through the phenolate-O, the imine-N and the pyridine-N and forms two six-membered chelate rings. The acetate is bidentate but asymmetric with respect to the Cu–O as well as C–O bond lengths. Only the complex where R = Br dimerises due to two reciprocal Cu?Br interactions.  相似文献   

11.
12.
This study reports the synthesis and characterization of novel ruthenium (II) complexes with the polydentate dipeptide, L-carnosine (2-[(3-aminopropanoyl)amino]-3-(1H-imidazol-5-yl)propanoic acid). Mixed-ligand complexes with the general composition [ML(p)(Cl)(q)(H?O)(r)]·xH?O (M = Ru(II); L = L-carnosine; p = 3 - q; r = 0-1; and x = 1-3) were prepared by refluxing aqueous solutions of the ligand with equimolar amounts of ruthenium chloride (black-alpha form) at 60 °C for 36 h. Physical properties of the complexes were characterized by elemental analysis, DSC/TGA, and cyclic voltammetry. The molecular structures of the complexes were elucidated using UV-Vis, ATR-IR, and heteronuclear NMR spectroscopy, then confirmed by density function theory (DFT) calculations at the B3LYP/LANL2DZ level. Two-dimensional NMR experiments (1H COSY, 13C gHMBC, and 1?N gHMBC) were also conducted for the assignment of chemical shifts and calculation of relative coordination-induced shifts (RCIS) by the complex formed. According to our results, the most probable coordination geometries of ruthenium in these compounds involve nitrogen (N1) from the imidazole ring and an oxygen atom from the carboxylic acid group of the ligand as donor atoms. Additional thermogravimetric and electrochemical data suggest that while the tetrahedral-monomer or octahedral-dimer are both possible structures of the formed complexes, the metal in either structure occurs in the 2? oxidation state. Resulting RCIS values indicate that the amide-carbonyl, and the amino-terminus of the dipeptide are not involved in chelation and these observations correlate well with theoretical shift predictions by DFT.  相似文献   

13.
14.
Trigonal copper sulfide nanoparticles were synthesized from symmetrical [(Bu)2NC(S)NC(O)C6H3(3,5-NO2)2]2Cu(II) and [(Bu)2NC(S)NC(O)C6H4(4-NO2)]2Cu(II) complexes by thermolysis in the presence of surfactant oleylamine. The symmetrical copper complexes were synthesized by reaction of copper(II) acetate with N-(3,5-dinitrobenzoyl)-N′,N′-dibutylthiourea and N-(4-nitrobenzoyl)-N′,N′-dibutylthiourea. The symmetrical copper complexes were characterized by FT-IR spectroscopy, elemental analysis, and mass spectrometry (MS-APCI). The single-crystal X-ray structure of [(Bu)2NC(S)NC(O)C6H4(4-NO2)]2Cu(II) has been determined from single-crystal X-ray diffraction data. These metal complexes have been used as single source precursors for the preparation of copper sulfide nanoparticles. The deposited copper sulfide nanoparticles were characterized by X-ray powder diffraction and transmission electron microscopy.  相似文献   

15.
A series of Zn(II) complexes of the tridentate azomethine ligands, condensation products of 2-(N-tosylamino)benzaldehyde and 2-aminoalkylpyridines, were synthesized by chemical and electrochemical methods. All compounds were characterized on the basis of C, H, N elemental analysis, Fourier-transform infrared, 1H nuclear magnetic resonance, UV–Vis, and photoluminescence studies. The local atomic structures of complexes were determined from analysis of extended X-ray absorption fine structure and X-ray absorption near-edge structure of Zn K-edges. The molecular structure of chloro-{4-methyl-N-[2-[(Z)-2-pyridyl)ethyliminomethyl]phenyl]benzenesulfamide}zinc(II) was determined by X-ray single-crystal diffraction. The fluorescence spectra show that these complexes in dimethyl sulfoxide solutions at room temperature emit bright blue luminescence at 435–461 nm with fluorescence quantum yields in the range of 0.20–0.31. The assignment and the nature of the bands in experimental UV–Vis spectra of complexes were analyzed using time-dependent density functional theory calculations B3LYP/6-31G(d). The azomethines and complexes of zinc have been screened for their antibacterial, protistocidal, and fungistatic activities against Penicillium italicum, Colpoda steinii, Escherichia coli 078, and Staphylococcus aureus P-209, and the results are compared with the activity of furazolidone, chloroquine, and Fundazol.  相似文献   

16.
The crystal structures of (μ-4,4-bipyridine)-di(nitrato-1-[(2-hydroxyethylimino)methyl]naphthalen-2-olocopper (I) and catena-di(μ-4,4’-bipyridine)di(μ-4,4’-bipyridine)-di(nitrato-2-[2-(hydroxyethylimino) methyl]phenolocopper)diaquacopper(II) nitrate (II) were determined. In the crystal of I, each of the two copper atoms coordinates a singly deprotonated tridentate azomethine molecule, a nitrate ion, and bipyridine, which functions as a bridge between the central atoms. The copper coordination polyhedron is a slightly distorted tetragonal pyramid with the base formed by the imine and bipyridine nitrogen atoms and the phenol and alcohol oxygen atoms. The axial site in the pyramid is occupied by the oxygen atom of the monodentate nitrate groups. In the trinuclear structure II with C2 crystal chemical symmetry, the terminal coordination unit is composed through copper coordination of monodeprotonated 2-[2-(hydroxyethylimino)methyl]phenol, bipyridine, and the nitrate anion. In the crystal, the trinuclear molecules form infinite ribbons along the z axis in which the pyridine molecules perform the bridging function. The central copper atom has an octahedral configuration formed by the nitrogen atoms of four 4,4’-bipyridine molecules and oxygen of two water molecules.  相似文献   

17.
18.
1 INTRODUCTION Schiff bases can be conveniently prepared from the corresponding aldehyde and primary amine, which, as multidentate ligands, have already received great attention. Many metal complexes of this kind of ligands have been used successfully in various re- actions, such as Diels-Alder and hetero-Diels-Alder reactions[1], kinetic resolution of racemic epoxides[2], and Nozaki-Hiyama-Kishi (NHK) reaction[3]. Recen- tly Berkessel et al. have reported that the Cr- complex of sal…  相似文献   

19.
Neutral copper complexes of the deprotonated [(4-methylphenyl)sulfonyl]-1H-imino-(2-phenyl-2-oxazoline) proligands, [HTs-ROz], R = H, 5-Me, 4-Me, 4-Et, 4-iPr, have been prepared by electrochemical oxidation of anodic copper in an MeCN solution of the corresponding proligand. The [Cu(Ts-ROz)2] complexes were characterised by microanalysis, i.r. and electronic spectroscopies, and by e.p.r. and magnetic measurements. The crystal structures of HTs-5MeOz, [Cu(Ts-Oz)2], [Cu(Ts-5MeOz)2] and [Cu(Ts-4MeOz)2] were determined by X-ray diffraction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号