首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report experimental results which show that the interfacial deformation around glass particles (radius, 200-300 microm) at an oil-water (or air-water) interface is dominated by an electric force, rather than by gravity. It turns out that this force, called for brevity "electrodipping," is independent of the electrolyte concentration in the water phase. The force is greater for oil-water than for air-water interfaces. Under our experimental conditions, it is due to charges at the particle-oil (instead of particle-water) boundary. The derived theoretical expressions, and the experiment, indicate that this electric force pushes the particles into water. To compute exactly the electric stresses, we solved numerically the electrostatic boundary problem, which reduces to a set of differential equations. Convenient analytical expressions are also derived. Both the experimental and the calculated meniscus profile, which are in excellent agreement, exhibit a logarithmic dependence at long distances. This gives rise to a long-range electric-field-induced capillary attraction between the particles, detected by other authors. Deviation from the logarithmic dependence is observed at short distances from the particle surface due to the electric pressure difference across the meniscus. The latter effect gives rise to an additional short-range contribution to the capillary interaction between two floating particles. The above conclusions are valid for either planar or spherical fluid interfaces, including emulsion drops. The electrodipping force, and the related long-range capillary attraction, can engender two-dimensional aggregation and self-assembly of colloidal particles. These effects could have implications for colloid science and the development of new materials.  相似文献   

2.
The field of quasi-elastic light scattering from thermally excited capillary waves at liquid surfaces is reviewed, with particular attention to scientific advances since 1992. These include surface-induced freezing in molecular fluids, the cross-over from capillary to elastic Rayleigh waves on the surfaces of gelling polymer solutions, the experimental demonstration of mixing of capillary and dilatational surface modes and the observation of effects due to processes tending to reduce the stability of the dilatational waves on surfactant solutions. The potential of this technique for surface and interface science is discussed.  相似文献   

3.
Surface light scattering (SLS) by capillary waves was used to investigate the adsorption behavior of non-ionic sugar surfactants at the air/liquid interface. SLS by the subphase (water) followed predictions from hydrodynamic theory. The viscoelastic properties (surface elasticity and surface viscosity) of monolayers formed by octyl beta-glucoside, octyl alpha-glucoside, and 2-ethylhexyl alpha-glucoside surfactants were quantified at submicellar concentrations. It is further concluded that a diffusional relaxation model describes the observed trends in high-frequency, nonintrusive laser light scattering experiments. The interfacial diffusion coefficients that resulted from fitting this diffusional relaxation model to surface elasticity values obtained with SLS reflect the molecular dynamics of the subphase near the interface. However, differences from the theoretical predictions indicate the existence of effects not accounted for such as thermal convection, molecular rearrangements, and other relaxation mechanisms within the monolayer. Our results demonstrate important differences in molecular packing at the air-water interface for the studied isomeric surfactants.  相似文献   

4.
A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r ~ 20-30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the liquid surface, the meniscus rises onto it because of capillary forces. Although the microsphere volume is 6 orders of magnitude smaller than the drop, it excites the normal resonance modes of the liquid interface. The sphere is pinned at the interface, whose small (<100 nm) oscillations are readily measured with AFM. Resonance oscillation frequencies were measured for drop volumes between 5 and 200 μL. The results for the two lowest normal modes are quantitatively consistent with continuum calculations for the natural frequency of hemispherical drops with no adjustable parameters. The method may enable sensitive measurements of volume, surface tension, and viscosity of small drops.  相似文献   

5.
A colloidal lithography method has been developed for patterning nonplanar surfaces. Hexagonal noncontiguously packed (HNCP) colloidal particles 127 nm-2.7 μm in diameter were first formed at the air-water interface and then adsorbed onto a substrate coated with a layer of polymer adhesive ~17 nm thick. The adhesive layer plays the critical role of securing the order of the particles against the destructive lateral capillary force generated by a thin film of water after the initial transfer of the particles from the air-water interface. The soft lithography method is robust and very simple to carry out. It is applicable to a variety of surface curvatures and for both inorganic and organic colloidal particles.  相似文献   

6.
Static and dynamic properties, and surface morphologies of monolayers at the air-water interface of a fuzzy rod polymer, poly(γ-stearyl α, L-glutamate), PSLG, have been examined by the Wilhelmy plate method for surface pressure, electrically induced capillary wave diffraction (ECWD), epi-fluorescence microscopy, and atomic force microscopy (AFM). The monolayers were first formed by spreading polymer solutions at the air-water interface and allowing the solvent to evaporate to obtain polymer films, i.e., spread monolayers. The surface mass density was varied by either successive additions of more solutions on a given surface area or step-wise compression of the surface barrier on a Langmuir trough. Surface pressure isotherms at 23–;60°C were confirmed to be reversible and reproducible, and an abrupt change at approximately 60°C was observed, which is reported as the melting point of crystalline stearyl side chains. By AFM, the monolayer director n by surface alignment was confirmed as perpendicular to the compression direction and certain islands of departure from the monolayer state were visualized upon transferring the monolayers horizontally to silicon wafers. Macroscopic anisotropy in the surface alignment was probed by the electrocapillary waves propagated perpendicular (⟂) and parallel (∥) to the director n; the surface tension anisotropy amount to about 7% difference, σ < 0.07, where σ is the surface tension deduced from the wave propagation characteristics. Multidomain morphologies of the monolayers were imaged by epi-fluorescence microscopy and they were found to differ according to the method of monolayer mass density variation, i.e., the successive addition and step-wise compression. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Transport mechanisms involved in capillary condensation of water menisci in nanoscopic gaps between hydrophilic surfaces are investigated theoretically and experimentally by atomic force microscopy (AFM) measurements of capillary force. The measurements showed an instantaneous formation of a water meniscus by coalescence of the water layers adsorbed on the AFM tip and sample surfaces, followed by a time evolution of meniscus toward a stationary state corresponding to thermodynamic equilibrium. This dynamics of the water meniscus is indicated by time evolution of the meniscus force, which increases with the contact time toward its equilibrium value. Two water transport mechanisms competing in this meniscus dynamics are considered: (1) Knudsen diffusion and condensation of water molecules in the nanoscopic gap and (2) adsorption of water molecules on the surface region around the contact and flow of the surface water toward the meniscus. For the case of very hydrophilic surfaces, the dominant role of surface water transportation on the meniscus dynamics is supported by the results of the AFM measurements of capillary force of water menisci formed at sliding tip-sample contacts. These measurements revealed that fast movement of the contact impedes on the formation of menisci at thermodynamic equilibrium because the flow of the surface water is too slow to reach the moving meniscus.  相似文献   

8.
The interaction between a charged surfactant and a lipase has been investigated by several methods. Interactions in aqueous bulk phase was studied by NMR and by microcalorimetry. Surface tension and neutron reflectivity were used for studies at the air-water interface. Interactions at the interface between a hydrophobic solid surface and water was investigated by ellipsometry. The results obtained are as follows. The cationic surfactant, tetradecyltrimethylammonium bromide (iodide in the NMR experiments), showed strong interaction at the air-water and the hydrophobic solid-water interfaces but no clear indication of an interaction in bulk phase was seen. The anionic surfactant showed no interaction with the lipase neither at the interfaces, nor in bulk. The difference in behavior of the system cationic surfactant-lipase in bulk and at the interfaces may be due to the change in enzyme conformation that is known to occur at interfaces between water and an apolar phase.  相似文献   

9.
Study of the aggregation of human insulin Langmuir monolayer   总被引:1,自引:0,他引:1  
The human insulin (HI) Langmuir monolayer at the air-water interface was systematically investigated in the presence and absence of Zn(II) ions in the subphase. HI samples were dissolved in acidic (pH 2) and basic (pH 9) aqueous solutions and then spread at the air-water interface. Spectroscopic data of aqueous solutions of HI show a difference in HI conformation at different pH values. Moreover, the dynamics of the insulin protein showed a dependence on the concentration of Zn(II) ions. In the absence of Zn(II) ions in the subphase, the acidic and basic solutions showed similar behavior at the air-water interface. In the presence of Zn(II) ions in the subphase, the surface pressure-area and surface potential-area isotherms suggest that HI may aggregate at the air-water interface. It was observed that increasing the concentration of Zn(II) ions in the acidic (pH 2) aqueous solution of HI led to an increase of the area at a specific surface pressure. It was also seen that the conformation of HI in the basic (pH 9) medium had a reverse effect (decrease in the surface area) with the increase of the concentration of Zn(II) ions in solution. From the compression-decompression cycles we can conclude that the aggregated HI film at air-water interface is not stable and tends to restore a monolayer of monomers. These results were confirmed from UV-vis and fluorescence spectroscopy analysis. Infrared reflection-absorption and circular dichroism spectroscopy techniques were used to determine the secondary structure and orientation changes of HI by zinc ions. Generally, the aggregation process leads to a conformation change from α-helix to β-strand and β-turn, and at the air-water interface, the aggregation process was likewise seen to induce specific orientations for HI in the acidic and basic media. A proposed surface orientation model is presented here as an explanation to the experimental data, shedding light for further research on the behavior of insulin as a Langmuir monolayer.  相似文献   

10.
Dewetted Bridgman is a crystal growth technique in which the crystal is detached from the crucible wall by a liquid free surface at the level of the solid-liquid interface, called liquid meniscus, which creates a gap between the crystal and the ampoule. Dewetting phenomenon was first obtained spontaneously in spatial experiments during the Bridgman solidification, and opened the possibility of reproducing experiments on the earth--obtained by applying a gas pressure difference Delta P=P cold-P hot between the cold and the hot sides of the sample. In order to understand the process which leads to a crystal with a constant radius on the ground, analytical and numerical studies of axisymmetric meniscus shapes are made and the dependence of the meniscus shape on the pressure difference is established. For this aim, starting from the Young-Laplace equation of a capillary surface in equilibrium in the presence of gas pressure, a mathematical model able to describe the meniscus surface z=z(r) and the angle theta=theta(r) between the tangent to the meniscus and the horizontal axis is presented. On the basis of this model, inequalities of the pressure intervals for which dewetting is feasible are established. Numerical results are performed for InSb crystals.  相似文献   

11.
Here, we consider in detail the problem of the shape of the capillary meniscus around a charged colloidal particle, which is attached to a fluid interface: oil/water or air/water. The meniscus profile is influenced by the electric field created by charges at the particle/nonpolar fluid boundary. We digitized the coordinates of points from the meniscus around silanized glass spheres (200-300 mum in radius) attached to the tetradecane/water interface. The theoretical meniscus shape is computed in three different ways that give numerically coincident results. It is proven that for sufficiently small particles the meniscus profile can be expressed as a superposition of pure electric and gravitational deformations. Special attention is paid to the comparison of theory and experiment. A procedure for data processing is developed that allows one to obtain accurate values of the contact angle and surface charge density from the fit of the experimental meniscus profile. For all investigated particles, excellent agreement between theory and experiment is achieved. The results indicate that the electric field gives rise to an interfacial deformation of medium range and considerable amplitude.  相似文献   

12.
This article describes a study of fumed silica particle layers adsorbed at the air-water interface. We have performed surface pressure, ellipsometry, and Brewster angle microscopy measurements. These determinations were complemented by surface viscoelasticity studies, using capillary waves to measure the compression moduli and an oscillating disc to measure the shear moduli. Our results show a strong influence of the particle hydrophobicity and surface density on the properties of the layers. Under compression-expansion, the particle layers rearrange quasi-instantaneously, and at high density, they buckle and/or collapse. Shear measurements show a transition from viscous to elastic behavior for particles with contact angles close to 90 degrees. The surface compression moduli are quite small and most likely not related to the stability of the foams made with these particles, in contrast to the case of more common surfactant foams.  相似文献   

13.
We show that two dips of an oxidized silicon substrate through a prepolymerized n-octadecylsiloxane monolayer at an air-water interface in a rapid succession produces periodic, linear striped patterns in film morphology extending over macroscopic area of the substrate surface. Langmuir monolayers of n-octadecyltrimethoxysilane were prepared at the surface of an acidic subphase (pH 2) maintained at room temperature (22 +/- 2 degrees C) under relative humidities of 50-70%. The substrate was first withdrawn at a high dipping rate from the quiescent aqueous subphase (upstroke) maintained at several surface pressures corresponding to a condensed monolayer state and lowered soon after at the same rate into the monolayer covered subphase (downstroke). The film structure and morphology were characterized using a combination of optical microscopy, imaging ellipsometry, and Fourier transform infrared spectroscopy. An extended striped pattern, perpendicular to the pushing direction of the second stroke, resulted for all surface pressures when the dipping rate exceeded a threshold value of 40 mm min(-1). Below this threshold value, uniform deposition characterizing formation of a bimolecular film was obtained. Under conditions that favored striped deposition during the downstroke through the monolayer-covered interface, we observed a periodic auto-oscillatory behavior of the meniscus. The stripes appear to be formed by a highly correlated reorganization and/or exchange of the first monolayer, mediated by the Langmuir monolayer at the air-water interface. This mechanism appears distinctly different from nanometer scale stripes observed recently in single transfers of phospholipid monolayers maintained near a phase boundary. The stripes further exhibit wettability patterns useful for spatially selective functionalization, as demonstrated by directed adsorptions of an organic dye (fluorescein) and an oil (hexadecane).  相似文献   

14.
The adsorption of the surfactant n-nonyl-beta-D-glucopyranoside at the air-water interface after injection of the surfactant into the subphase was studied by infrared reflection absorption spectroscopy. In the first part, we investigated the equilibrium adsorption of n-nonyl-beta-D-glucopyranoside and the Gibbs adsorption isotherm was measured by applying the film balance technique. In the second part, the adsorption kinetics was followed by changes in the surface pressure and in the intensities of the OH band, which is related to the layer thickness, and the CH(2) antisymmetric stretching vibrational band. During an induction period, when the molecules are still highly diluted and the surface pressure is low, they are oriented parallel to the air-water interface. IR band simulations for the CH(2) antisymmetric stretching vibrational band support the idea of horizontally oriented molecules at the air-water interface. Later on, when more molecules are adsorbed to the air-water interface, they suddenly rearrange to an upright orientation as indicated by changes of the OH and the CH(2) bands. The observations are discussed in comparison to results obtained for the adsorption kinetics of n-decyl-beta-D-maltopyranoside, n-dodecyl-beta-D-maltopyranoside, and sodium dodecyl sulfate.  相似文献   

15.
This paper reviews the way to compute capillary forces between two solids by numerically integrating the Laplace equation describing the shape of an axially symmetric meniscus at equilibrium. The numerical results of the proposed model have been experimentally validated with a test bed able to measure forces of about 1 mN with an accuracy of about 1 microN. Thanks to the simulation tool and the test bed, the influence of the following parameters has been studied: surface tension, solid geometry, volume of liquid, materials, separation distance between both solids, and surrounding environment. The way to compute the force from a given meniscus geometry has been clarified as far as the "Laplace" and "tension" contributions are concerned.  相似文献   

16.
The equilibrium position of a spherical or prolate spheroidal particle resembling a needle floating at the interface between two immiscible fluids is discussed. A three-dimensional meniscus attached to an a priori unknown contact line at a specified contact angle is established around the particle, imparting to the particle a capillary force due to surface tension that is balanced by the buoyancy force and the particle weight. An accurate numerical solution for a floating sphere is obtained by solving a boundary-value problem, and the results are compared favorably with an approximate solution where the effect of the particle surface curvature is ignored and the elevation of the contact line is computed using an analytical solution for the meniscus attached to an inclined flat plate. The approximate formulation is applied locally around the nearly planar elliptical contact line of a prolate spheroid to derive a nonlinear algebraic equation governing the position of the particle center and the mean elevation of the contact line. The effect of the fluid and particle densities, contact angle, and capillary length is discussed, and the shape of the contact line is reconstructed and displayed from the local solution.  相似文献   

17.
Capillary condensation at the nanoscale differs from condensation in the bulk phase, because it is a strong function of surface geometry and gas-surface interactions. Here, the effects of geometry on the thermodynamics of capillary condensation at the neck region between nanoparticles are investigated via a grand canonical Monte Carlo simulation using a two-dimensional lattice gas model. The microscopic details of the meniscus formation on various surface geometries are examined and compared with results of classical macromolecular theory, the Kelvin equation. We assume that the system is composed of a lattice gas and the surfaces of two particles are approximated by various shapes. The system is modeled on the basis of the molecular properties of the particle surface and lattice gas in our system corresponding to titania nanoparticles and tetraethoxy orthosilicate molecules, respectively. This system was chosen in order to reasonably emulate our previous experimental results for capillary condensation on nanoparticle surfaces. Qualitatively, our simulation results show that the specific geometry in the capillary zone, the surface-surface distance, and the saturation ratio are important for determining the onset and broadening of the liquid meniscus. The meniscus height increases continuously as the saturation ratio increases and the meniscus broadens faster above the saturation ratio of 0.90. The change of the radius of curvature of the particle surface affects the dimensions of the capillary zone, which drives more condensation in narrow zones and less condensation in wide zones. The increase of surface-surface distance results in the decrease of the meniscus height or even the disappearance of the meniscus entirely at lower saturation ratios. These effects are significant at the nanoscale and must be carefully considered in order to develop predictive relationships for meniscus height as a function of saturation conditions.  相似文献   

18.
Photolysis of polycyclic aromatic hydrocarbons on water and ice surfaces   总被引:2,自引:0,他引:2  
Laser-induced fluorescence detection was used to measure photolysis rates of anthracene and naphthalene at the air-ice interface, and the kinetics were compared to those observed in water solution and at the air-water interface. Direct photolysis proceeds much more quickly at the air-ice interface than at the air-water interface, whereas indirect photolysis due to the presence of nitrate or hydrogen peroxide appears to be suppressed at the ice surface with respect to the liquid water surface. Both naphthalene and anthracene self-associate readily on the ice surface, but not on the water surface. The increase in photolysis rates observed on ice surfaces is not due to this self-association, however. The wavelength dependence of the photolysis indicates that it is due to absorption by the PAH. No dependence of the rate on temperature is seen, either at the liquid water surface or at the ice surface. Molecular oxygen appears to play a complex role in the photolytic loss mechanism, increasing or decreasing the photolysis rate depending on its concentration.  相似文献   

19.
A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface roughness and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose overlap engenders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from planarity can be formally treated as positive and negative "capillary charges," which form "capillary multipoles." Here, we derive theoretical expressions for the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interaction energy could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy is typically much greater than the thermal energy kT. As a consequence, a monolayer from capillary multipoles exhibits considerable shear elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be helpful for the understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretation of rheological properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional self-assembly of microscopic particles.  相似文献   

20.
Complexation of lipids and surfactants with short DNA fragments at the air-water interface has been studied by neutron reflectivity. Complexation with zwitterionic lipids occurs in the presence of divalent cations, and ion specificity has been demonstrated (binding is less effective with Ba2+ than with Mg2+ or Ca2+). One and two DNA layers have been observed for dilute and more compact lipid monolayers, respectively. Two DNA layers have also been found with the soluble cationic surfactant dodecyltrimethylammonium bromide (DTAB), except close to the precipitation boundary. This result is opposite to that found in ellipsometry where very thick layers are found in this region. It is possible that the ellipsometry signal is due to highly hydrated bulk complexes adsorbing at the surface, not seen by neutrons because of unfavorable contrast conditions. Long DNA was found to be less keen to form surface complexes than short DNA fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号