首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inelastic neutron scattering (INS) on pure water and on aqueous solutions of homologous disaccharides, such as trehalose and sucrose, are presented. Neutron spectra were collected over a temperature range of 253 to 353 K by using the spectrometer MARI at the ISIS pulsed neutron source of the Rutheford Appleton Laboratory (Chilton, UK). The MARI spectrometer allowed us to get information on the hydrogen bond strength for the two homologous disaccharide/H2O mixtures by analysing their low frequency vibrational properties.  相似文献   

2.
The dynamics of trehalose molecules in aqueous solutions confined in silica gel have been studied by quasielastic neutron scattering (QENS). Small-angle neutron scattering measurements confirmed the absence of both sugar clustering and matrix deformation of the gels, indicating that the results obtained are representative of homogeneous trehalose solutions confined in a uniform matrix. The pore size in the gel is estimated to be 18 nm, comparable to the distances in cell membranes. For the QENS measurements, the gel was prepared from D2O in order to accentuate the scattering from the trehalose. Values for the translational diffusion constant and effective jump distance were derived from model fits to the scattering function. Comparison with QENS and NMR results in the literature for bulk trehalose shows that confinement on a length scale of 18 nm has no significant effect on the translational diffusion of trehalose molecules.  相似文献   

3.
Quasielastic neutron scattering has been used to investigate the dynamical behavior of H(2)O in water/tert-butyl alcohol solutions. The measurements were made at fixed temperature (293 K) as a function of tert-butyl alcohol molar fraction, x, in the range 0-0.042. The data have been compared to those of pure water in the temperature range 269-293 K. The effect of tert-butyl alcohol addition on water dynamics is equivalent to that obtained by lowering the temperature of pure water by an amount proportional to the alcohol concentration. The temperature dependence of the diffusivity parameters in pure water and their concentration dependence in tert-butyl alcohol/water solutions can be rescaled to a common curve attributing to each solution a concentration-dependent "structural temperature" lower than the actual thermodynamic one. These results can be understood in terms of Stillinger's picture of water structuring and of other more recent theoretical pictures that emphasize the influence of the geometrical properties of hydrogen bond networks on water mobility.  相似文献   

4.
Quasielastic neutron scattering was used to probe the diffusion of water molecules in 2.3 molal CaCl(2) solution confined in 100% hydrated Vycor glass in the temperature range of 220 to 260 K. We observed a gradual transition from the restricted diffusion regime at lower temperatures to unrestricted diffusion regime at higher temperatures. The diffusion parameters were compared with the data on pure water confined in Vycor available in the literature. We found that the effect of dissolved ions onto the diffusion dynamics of the water molecules in the solution was amplified by confinement by at least an order of magnitude compared to bulk form, even though the dissolved ions were found to have little effect on the spatial characteristics of the restricted diffusion process of water molecules. At 260 K, the local diffusion coefficient of water molecules in the H(2)O-CaCl(2) confined in Vycor was only 6% of the value reported for pure water confined in Vycor.  相似文献   

5.
We present a study of the dynamical behavior of trehalose, a cryoprotecting agent, in concentrated aqueous solutions. Dynamics in a wide time range from picoseconds to nanoseconds has been observed using both neutron time of flight and neutron spin-echo techniques. Fast dynamics has been described using a simple diffusion model, while dynamical processes at longer times show a more complex behavior, described by a stretched exponential decay. Obtained relaxation times show a good agreement with data from viscosity measurements on aqueous trehalose solutions by Magazu et al. [Branca, Magazu, Maisano et al., J. Phys.: Condens. Matter 11, 3823 (1999)]. Experimental data provide us with some insight into the cryoprotecting properties and processes of trehalose. We conclude that an increase of the solvent viscosity in embedded biological material due to the production or the presence of trehalose might prevent biomolecules from damage.  相似文献   

6.
Highly diluted solutions of an alkaline treated pig bone gelatin and a seaweed alginate of Macrocystis pyrifera have been investigated by means of static light scattering at various temperatures. With these results the thermodynamic properties found by other authors and us before can be verified. Furthermore, diluted mixtures of both polymers with different ratios of composition have been investigated. These measurements show that both polymers in all mixtures behave quasi-binarily in the investigated temperature range. They maintain their association phenomena of the pure polymer solutions.  相似文献   

7.
This work was undertaken to investigate thermal and dynamic transitions observed in the temperature range close to the bulk ice melting temperature in sucrose solutions. Measurements of thermal (differential calorimetry) and dynamic (neutron scattering) properties were compared in order to give a physical interpretation of the thermal transitions observed during the thawing of amorphous sucrose solutions. In fact, the freezing of biological material leads to the distinction between different pools of water: bulk water which becomes ice after freezing, unfrozen water trapped in the glassy matrix or close to the interface of solutes can be considered, and finally freezable confined water with a lower melting point than bulk water and with properties depending on both the ice presence and the microstructure of the material. The transition temperatures such as glass transition or melting are dependent on the freezing protocol used and examples of annealing effects are presented, in order to underline the necessity of a good temperature control during freezing for the study of biological material with freezable water.  相似文献   

8.
Car-Parrinello molecular dynamics simulations have been carried out for aqueous NaOH and KOH solutions under ambient conditions over a wide range of concentrations. From these simulations, we have observed a continuous change of the water structure with added hydroxide, characterized by a significant shift of the second peak of the OO radial distribution functions to shorter distances. At the highest concentration investigated, the normal tetrahedral coordination of pure water is completely missing, a result that is consistent with a recent neutron diffraction experiment. The added hydroxide also gives rise to some unique spectroscopic features, including a "free" O-H stretch, a broadening of the normal water OH stretching band, and a large blue shift of both the librational band and the low-frequency translation. These results are in good agreement with the experimental data. Finally, it was demonstrated that the structural and dynamical behavior is inextricably linked to the formation of compact hydroxide-water complexes.  相似文献   

9.
X-ray absorption spectroscopy (XAS) and small angle x-ray scattering (SAXS) were utilized to study the effect of fluoride (F(-)) anion in aqueous solutions. XAS spectra show that F(-) increases the number of strong H-bonds, likely between F(-) and water in the first hydration shell. SAXS data show a low-Q scattering intensity increase similar to the effect of a temperature decrease, suggesting an enhanced anomalous scattering behavior in F(-) solutions. Quantitative analysis revealed that fluoride solutions have larger correlation lengths than chloride solutions with the same cations but shorter compared to pure water. This is interpreted as an increased fraction of tetrahedral low-density structures in the solutions due to the presence of the F(-) ions, which act as nucleation centers replacing water in the H-bonding network and forming stronger H-bonds, but the presence of the cations restricts the extension of strong H-bonds.  相似文献   

10.
Strongly ionized amphiphilic diblock copolymers of poly(styrene)-b-poly(styrenesulfonate) with various hydrophilic and hydrophobic chain lengths were synthesized by living radical polymerization, and their properties and self-assembling behavior were systematically investigated by surface tension measurement, foam formation, hydrophobic dye solubilization, X-ray reflectivity, dynamic light scattering, small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscope techniques. These copolymer solutions in pure water did not show a decrease of surface tension with increasing polymer concentration. The solutions also did not show foam formation, and no adsorption at the air/water interface was confirmed by reflectivity experiments. However, in 0.5 M NaCl aq solutions polymer adsorption and foam formation were observed. The critical micelle concentration (cmc) was observed by the dye solubilization experiment in both the solutions with and without added salt, and by dynamic light scattering we confirmed the existence of polymer micelles in solution, even though there was no adsorption of polymer molecules at the water surface in the solution without salt. By the small-angle scattering technique, we confirmed that the micelles have a well-defined core-shell structure and their sizes were 100-150 A depending on the hydrophobic and hydrophilic chain length ratio. The micelle size and shape were unaffected by addition of up to 0.5 M salt. The absence of polymer adsorption at the water surface with micelle formation in a bulk solution, which is now known as a universal characteristic for strongly ionized amphiphilic block copolymers, was attributed to the image charge effect at the air/water interface due to the many charges on the hydrophilic segment.  相似文献   

11.
Silica gels containing solutions of glucose in heavy water at different concentrations have been prepared by a sol-gel method. Dynamical studies with quasielastic neutron scattering, compared with previous results on bulk solutions, show that the dynamics of the glucose molecules are not appreciably affected by the confinement, even though the gels behave macroscopically as solid materials. Small-angle neutron-scattering spectra on the same systems, fitted with a fractal model, yield a correlation length that decreases from 20 to 2.5 nm with increasing glucose concentration, suggesting a clustering of glucose molecules in concentrated solutions that is consistent with the dynamical measurements. These two sets of results imply that 20 nm is an upper limit for the scale at which the dynamics of glucose molecules in solution are affected by confinement.  相似文献   

12.
We investigate a lattice-fluid model of water, defined on a three-dimensional body-centered-cubic lattice. Model molecules possess a tetrahedral symmetry, with four equivalent bonding arms. The model is similar to the one proposed by Roberts and Debenedetti [J. Chem. Phys. 105, 658 (1996)], simplified by removing distinction between "donors" and "acceptors." We focus on the solvation properties, mainly as far as an ideally inert (hydrophobic) solute is concerned. As in our previous analysis, devoted to neat water [J. Chem. Phys. 121, 11856 (2004)], we make use of a generalized first-order approximation on a tetrahedral cluster. We show that the model exhibits quite a coherent picture of water thermodynamics, reproducing qualitatively several anomalous properties observed both in pure water and in solutions of hydrophobic solutes. As far as supercooled liquid water is concerned, the model is consistent with the second critical-point scenario.  相似文献   

13.
Thermal properties and mixing states of ethylene glycol (EG)-water binary solutions in the entire mole fraction range of EG, 0 < or = x(EG) < or = 1, have been clarified by using differential scanning calorimetry (DSC), large-angle X-ray scattering (LAXS), and small-angle neutron scattering (SANS) techniques. The DSC curves obtained have shown that the EG-water solutions over the range of EG mole fraction 0.3 < or = x(EG) < or = 0.5 are kept in the supercooling state until approximately 100 K, and those in the range of 0.6 < or = x(EG) < or = 0.8 are vitrified, and those in the ranges of 0 < x(EG) < or = 0.2 and 0.9 < or = x(EG) < 1 are crystallized. The radial distribution function (RDF) for pure EG obtained from the LAXS measurements has suggested that a gauche conformation of an EG molecule is favorable in the liquid. The RDFs for the EG-water solutions have shown that the structure of the binary solutions moderately changes from the inherent structure of EG to the tetrahedral-like structure of water when the water content increases. The SANS intensities for deuterated ethylene glycol (HOCD2CD2OH) (EGd4)-water solutions at x(EG) = 0.4 and 0.6 have not been significantly observed in the temperature range from 298 to 173 K, showing that EG and water molecules are homogeneously mixed. On the other hand, the SANS intensities at x(EG) = 0.2 and 0.9 have been strengthened when the temperature decreases due to crystallization of the solutions. On the basis of all the present results, a relation between thermal properties of EG-water binary solutions and their mixing states clarified by the LAXS and SANS measurements has been discussed at the molecular level.  相似文献   

14.
The diffusional mobility of disodium fluorescein has been measured in supercooled aqueous solutions of trehalose, a widely used cryoprotectant disaccharide. The results were analyzed on the basis of the classical continuum hydrodynamic theory (Stokes-Einstein relationship) and compared with results for the diffusion and electrical conductivity of other ionic and nonionic solutes in trehalose and sucrose aqueous solutions. Disodium fluorescein obeys the classical model over a restricted range of inverse reduced temperatures, T g/ T, scaled by the glass transition temperature. Decoupling in neutral solutes takes place at higher values of T g/ T, while in ionic solutes it occurs all over the range of T g/ T studied, as observed for the water mobility in supercooled sugar solutions.  相似文献   

15.
A series of large-scale atomistic molecular dynamics simulations were conducted to study the structural and interfacial properties of nonionic dimethyldodecylamine-N-oxide (DDAO) micelles with an aggregation number of 104 in pure water, which was determined using small-angle neutron scattering (SANS). From these simulations, the micelles were found to be generally ellipsoidal in shape with axial ratios of ~1.3-1.4, which agrees well with that found from small-angle neutron scattering measurements. The resulting micelles have an area per DDAO molecule of 94.8 ?(2) and an average number of hydration water molecules per DDAO molecule of ~8. The effect of the encapsulation of ethyl butyrate (CH(3)(CH(2))(2)COOCH(2)CH(3), C(4)) and ethyl caprylate (CH(3)(CH(2))(6)COOCH(2)CH(3), C(8)) on the structural and interfacial properties of the nonionic DDAO aggregates was also examined. In the presence of the C(4) oil molecules, the aggregates were found to be less ellipsoidal and more spherical than the pure DDAO micelles, while the aggregates in the presence of the C(8) oil molecules were almost perfect spheres. In addition, the C(4) oil molecules move into the core of the aggregates, while the C(8) oil molecules stay in the headgroup region of the aggregates. Finally, the structural properties of two micelles formed from different starting states (a "preassembled" sphere and individual DDAO molecules distributing in water) were found to be nearly identical.  相似文献   

16.
The structural effect of trehalose confined in water-containing sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reversed micelles at water to AOT molar ratio W = 5 and 10 as a function of the trehalose to AOT molar ratio T (0 < T < 0.1) has been investigated by small-angle neutron scattering (SANS). SANS data analysis is consistent with the hypothesis that trehalose is encapsulated within the quite spherical hydrophilic micellar cores of water-containing reversed micelles, causing an increase of the aggregate size and a decrease of the polydispersion. Moreover, SANS results suggest that the trehalose confinement in water-containing reversed micelles involves marked changes on the molecular packing of the water-containing micellar cores. In particular, according to the obtained findings, we can hypothesize the intercalation of the trehalose molecules between the polar surfactant headgroups. The preferential solubilization in this specific nanodomain could explain the trehalose capability to prevent, upon dehydration, the transition to a gel phase, hindering serious damage to biostructures.  相似文献   

17.
Spherical micelles of the diblock copolymer/surfactant Brij 700 (C(18)EO(100)) in water (D(2)O) solution have been investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS and SANS experiments are combined to obtain complementary information from the two different contrast conditions of the two techniques. Solutions in a concentration range from 0.25 to 10 wt % and at temperatures from 10 to 80 degrees C have been investigated. The data have been analyzed on absolute scale using a model based on Monte Carlo simulations, where the micelles have a spherical homogeneous core with a graded interface surrounded by a corona of self-avoiding, semiflexible interacting chains. SANS and SAXS data were fitted simultaneously, which allows one to obtain extensive quantitative information on the structure and profile of the core and corona, the chain interactions, and the concentration effects. The model describes the scattering data very well, when part of the EO chains are taken as a "background"contribution belonging to the solvent. The effect of this becomes non-negligible at polymer concentrations as low as 2 wt %, where overlap of the micellar coronas sets in. The results from the analysis on the micellar structure, interchain interactions, and structure factor effects are all consistent with a decrease in solvent quality of water for the PEO block as the theta temperature of PEO is approached.  相似文献   

18.
Mixed micelles of sodium dodecyl sulfate (SDS) and poly(propylene oxide) methacrylate (PPOMA) have been studied in the presence of acrylamide using conductimetry, fluorescence spectroscopy, and small-angle neutron scattering (SANS) under the following conditions: (i) the SDS-acrylamide binary system in water; (ii) the SDS-acrylamide-PPOMA ternary system in water. The addition of acrylamide in SDS solutions perturbs the micellization of the surfactant by decreasing the aggregation number of the micelles and increasing their ionization degree. The variations of the various micellar parameters versus the weight ratio R=PPOMA/SDS are different in the presence of acrylamide or in pure water. These differences are much more pronounced for the lower than for the higher PPOMA concentrations. There is competition between acrylamide and PPOMA and at higher PPOMA concentration, acrylamide tends to be released from SDS micelles and is completely replaced by PPOMA.  相似文献   

19.
Incoherent inelastic neutron scattering experiments were performed on Na0.7CoO2 and Na0.28CoO2.1.3H2O in order to understand how the dynamics of the hydrogen-bond network of water is modified in the triangular crystalline lattice NaxCoO2.yH2O. Using quasi-elastic neutron scattering (QENS), we were able to differentiate between two types of proton dynamics: a fast process (due to water strongly bound into the sodium cobalt oxyhydrate structure during the hydration process) and a slow process (likely attributable to a collective motion). High-resolution QENS experiments, carried out on Na0.28CoO2.1.3H2O, show that, at temperatures above 310 K, the water dynamics can be well-described by a random jump diffusion model characterized by a diffusion constant equal to 0.9 x 10(-9)m2/s, which is significantly lower than the rate of diffusion for bulk water. Furthermore, our results indicate that, at room temperature, the sodium ions have no influence on the rotational dynamics of the "fast" water molecules.  相似文献   

20.
Difference and double-difference near-infrared DO-D and HO-H stretching overtone (2nuOD and 2nuOH) spectroscopy and a rigorous (physically substantiated) band deconvolution technique were applied to reveal three different kinds of inherent (interstitial) structures of liquid water, which determine its high density (compared to ice lh under ambient conditions), its compressibility (under hydrostatic pressure, up to 300MPa), and its high fragility (manifested under temperature variation). Our data processing allowed the rigorous discrimination of up to six vibrational components. On the basis of an extensive comparative analysis combined with available structural data (X-ray and neutron scattering) and molecular dynamics (MD) simulations for liquid water, as well as with experimental and computed data for small non-tetrahedrally arranged water clusters, the major four components could be ascribed to: i) The basic lh icelike substructure; ii) the temperature-dependent remote interstitial "defects" due to tetrahedral displacements (primarily responsible for transport properties); iii) the interstitial "defects" most probably arranged in quasiplanar noncyclic tetramers (totally absent in the ice structure); and iv) the interstitial "defects" formed with increasing pressure, probably arranged in cubic water octamers and composed of two pairs of noncyclic and cyclic tetramer fragments. The latter structures include, essentially, bent hydrogen bonds stabilized by resonance effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号