首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Accurate assessment of the value of the incompressibility coefficient, K, of symmetric nuclear matter, which is directly related to the curvature of the equation of state (EOS), is needed to extend our knowledge of the EOS in the vicinity of the saturation point. We review the current status of K as determined from experimental data on isoscalar giant monopole and dipole resonances (compression modes) in nuclei, by employing the microscopic theory based on the random-phase approximation (RPA).  相似文献   

2.
3.
There are a lot of difficulties and troubles in quantum mechanics, when the linear Schrödinger equation is used to describe microscopic particles. Thus, we here replace it by a nonlinear Schrödinger equation to investigate the properties and rule of microscopic particles. In such a case we find that the motion of microscopic particle satisfies classical rule and obeys the Hamiltonian principle, Lagrangian and Hamilton equations. We verify further the correctness of these conclusions by the results of nonlinear Schrödinger equation under actions of different externally applied potential. From these studies, we see clearly that rules and features of motion of microscopic particle described by nonlinear Schrödinger equation are greatly different from those in the linear Schrödinger equation, they have many classical properties, which are consistent with concept of corpuscles. Thus, we should use the nonlinear Schrödinger equation to describe microscopic particles.  相似文献   

4.
中子星结构一直是核物理、粒子物理和天体物理共同关注的热点难题,双中子星并合事件GW170817的发现更是掀起这一研究的高潮。致密物质的状态方程是决定中子星结构的关键输入量,但是到目前为止,高密度的核物质状态方程行为依然很难确定。如今国内外已有许多运行或规划的大型核实验装置和天文观测设备,有望帮助我们很快解开致密物质状态方程的谜团。本文系统地阐述了基于微观多体理论和唯象模型对脉冲星类天体状态方程的研究现状,也讨论了奇异相变和奇异物质。结合理论计算和核物理实验及天文观测数据,致密物质状态方程的研究已取得相当多进展,但是也面临不少挑战,比如从实验和观测数据提取状态方程信息时的模型依赖,中子星各部分模型的不自洽以及各种依赖热密物质复杂动力学性质的实验和观测量。随着LIGO即将再运行而发现更多双中子星甚至中子星-黑洞等并合事件,多信使天文观测可望最终揭开中子星结构之谜。The matter state inside neutron stars (NSs) is an exciting problem in nuclear physics, particle physics and astrophysics. The equation of state (EOS) of NSs plays a crucial role in the present multimessenger astronomy, especially after the event of GW170817. Thanks to accruing studies with advanced telescopes and radioactive beam facilities, the unknown EOS of supranuclear matter could soon be understood. We review the current status of the EOS for pulsar-like compact objects, that have been studied with both microscopic many-body approaches and phenomenological models. The appearance of strange baryonic matter and strange quark matter are also discussed. We compare the theoretical predictions with different data coming from both nuclear physics experiments and astrophysical observations. Despite great progresses obtained in dense nuclear matter properties, there are various challenges ahead, such as the model dependence of the constraints extracted from either experimental or observational data, the lack of a consistent and rigorous many-body treatment of all parts of the star, the dependence of many observables on the turbulent dynamics of relevant hot dense system. As LIGO is about to run again and discover more NS merger events, multimessenger observations are expected to finally unravel the mystery of NS structure.  相似文献   

5.
We present a light scattering study of aqueous suspensions of microgel particles consisting of poly(N-Isopropyl-Acrylamide) cross-linked gels. The solvent quality for the particles depends on temperature and thus allows tuning of the particle size. The particle synthesis parameters are chosen such that the resulting high surface charge of the particles prevents aggregation even in the maximally collapsed state. We present results on static and dynamic light scattering (SLS/DLS) for a highly diluted sample and for diffuse optical transmission on a more concentrated system. In the maximally collapsed state the scattering properties are well described by Mie theory for homogenous hard spheres. Upon swelling we find that a radially inhomogeneous density profile develops.  相似文献   

6.
S. B. Khasare 《中国物理 B》2011,20(8):85101-085101
We present a simple method of obtaining various equations of state for hard sphere fluid in a simple unifying way.We will guess equations of state by using suitable axiomatic functional forms (n=1,2,3,4,5) for surface tension S n m (r),r ≥ d/2 with intermolecular separation r as a variable,where m is an arbitrary real number (pole).Among the equations of state obtained in this way are Percus-Yevick,scaled particle theory and Carnahan-Starling equations of state.In addition,we have found a simple equation of state for the hard sphere fluid in the region that represents the simulation data accurately.It is found that for both hard sphere fluids as well as Lennard-Jones fluids,with m=3/4 the derived equation of state (EOS) gives results which are in good agreement with computer simulation results.Furthermore,this equation of state gives the Percus-Yevick (pressure) EOS for the m=0,the Carnahan-Starling EOS for m=4/5,while for the value of m=1 it corresponds to a scaled particle theory EOS.  相似文献   

7.
In radiation cancer therapies using energetic charged particles such as proton/heavy-ion therapy and boron neutron capture therapy (BNCT), studies on radiation-induced biological response at cellular level are important because the radiation damage from energetic charged particles is highly localized along their paths and the radiation sensitivity is quite different in each cellular organelle. In such studies the information on the position of charged particle impact in biological cells is necessary. A novel method for high-resolution nuclear track mapping in detailed cellular histology has been developed. In this technique, biological specimens mounted on CR-39 plates are exposed to energetic charged particles. The irradiated samples are exposed to UV, and then etched for a short time. Both etch pits of nuclear tracks and relief for transmission UV image of the specimen can be observed on the CR-39 surface with an atomic force microscope (AFM) at about 100 nm resolution.  相似文献   

8.
Discrete simulation methods are efficient tools to investigate the behaviors of complex fluids such as dry granular materials or dilute suspensions of hard particles. By contrast, materials made of soft and/or concentrated units (emulsions, foams, vesicles, dense suspensions) can exhibit both significant elastic particle deflections (Hertz-like response) and strong viscous forces (squeezed liquid). We point out that the gap between two particles is then not determined solely by the positions of their centers, but rather exhibits its own dynamics. We provide the first ingredients of a new discrete numerical method, named Soft Dynamics, to simulate the combined dynamics of particles and contacts. As an illustration, we present the results for the approach of two particles. We recover the scaling behaviors expected in three limits: the Stokes limit for very large gaps, the Poiseuille-lubricated limit for small gaps and even smaller surface deflections, and the Hertz limit for significant surface deflections. We find that for each gap value, an optimal force achieves the fastest approach velocity. The principle of larger-scale simulations with this new method is provided. They will consitute a promising tool for investigating the collective behaviors of many complex materials.  相似文献   

9.
We study a model of mass-bearing coagulating planar Brownian particles. The coagulation occurs when two particles are within a distance of order ε. We assume that the initial number of particles N is of order |logε|. Under suitable assumptions of the initial distribution of particles and the microscopic coagulation propensities, we show that the macroscopic particle densities satisfy a Smoluchowski-type equation.  相似文献   

10.
In this paper, we present the elementary principles of nonlinear quantum mechanics (NLQM), which is based on some problems in quantum mechanics. We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles. Concretely speaking, we study in this paper the wave-particle duality of the solution of the nonlinear Schr?dinger equation, the stability of microscopic particles described by NLQM, invariances and conservation laws of motion of particles, the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the mechanism and rules of particle collision, the features of reflection and the transmission of particles at interfaces, and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles, and so on. We obtained the invariance and conservation laws of mass, energy and momentum and angular momentum for the microscopic particles, which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions. We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics (LQM). They have a lot of new properties; for example, the particles possess the real wave-corpuscle duality, obey the classical rule of motion and conservation laws of energy, momentum and mass, satisfy minimum uncertainty relation, can be localized due to the nonlinear interaction, and its position and momentum can also be determined, etc. From these studies, we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM. Therefore, the NLQM is a new physical theory, and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems, which can solve problems disputed for about a century by scientists in the LQM field. Hence, the NLQM built is very necessary and correct. The NLQM established can promote the development of physics and can enhance and raise the knowledge and recognition levels to the essences of microscopic matter. We can predict that nonlinear quantum mechanics has extensive applications in physics, chemistry, biology and polymers, etc.   相似文献   

11.
In this paper, we present the elementary principles of nonlinear quantum mechanics (NLQM), which is based on some problems in quantum mechanics. We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles. Concretely speaking, we study in this paper the wave-particle duality of the solution of the nonlinear Schrödinger equation, the stability of microscopic particles described by NLQM, invariances and conservation laws of motion of particles, the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the mechanism and rules of particle collision, the features of reflection and the transmission of particles at interfaces, and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles, and so on. We obtained the invariance and conservation laws of mass, energy and momentum and angular momentum for the microscopic particles, which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions. We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics (LQM). They have a lot of new properties; for example, the particles possess the real wave-corpuscle duality, obey the classical rule of motion and conservation laws of energy,momentum and mass, satisfy minimum uncertainty relation, can be localized due to the nonlinear interaction, and its position and momentum can also be determined, etc. From these studies, we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM. Therefore, the NLQM is a new physical theory, and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems, which can solve problems disputed for about a century by scientists in the LQM field. Hence, the NLQM built is very necessary and correct. The NLQM established can promote the development of physics and can enhance and raise the knowledge and recognition levels to the essences of microscopic matter. We can predict that nonlinear quantum mechanics has extensive applications in physics, chemistry, biology and polymers, etc.  相似文献   

12.
The Boltzmann-Nordheim-Vlasov (BNV) equation has been solved by using a microscopic momentum-dependent (MD) nuclear mean field. This potential has been calculated in the framework of the self-consistent Brueckner theory up to the second order in the G-matrix. Comparison with the so-called soft and stiff Equation of State (EOS) is presented, using the Skyrme force. Calculations have been performed for the 93Nb + 93Nb reaction at Elab = 100, 250, 400A MeV. Our results show that the subthreshold π0 production cross-section is very sensitive to the momentum-dependent mean field, resulting, at the lowest energy, in a total cross-section a factor of 7 larger than that obtained with a local potential. The effect decreases as the bombarding energy increases.  相似文献   

13.
利用同位旋相关的量子分子动力学模型,研究了112Sn+112Sn和124Sn+124Sn两反应系统在不同入射能量、不同碰撞参数、不同势场和不同核子-核子碰撞截面下的粒子发射特征.阐述了发射体系的同位旋对轻粒子产额比的影响.发现轻粒子产额比是同位旋的敏感观测量.另外,还发现中快度区发射的粒子有更高的丰中子程度.同时,轻粒子的比不敏感于核子核子碰撞截面,而敏感于核态方程,这使得从轻粒子比提取同位旋相关的核态方程变成一种可能. 关键词: 同位旋相关的量子分子动力学 同位旋效应 轻粒子产额比  相似文献   

14.
In the framework of the effective mass bag model (EMBM) we have performed the thermodynamical treatment for strange quark matter (SQM) self-consistently, which overcomes the inconsistencies in the thermodynamical properties of the system. Because of the existence of the pressure extra term, the SQM equation of state (EOS) becomes stiffer comparing with the one for the original EMBM. It is interesting to find that in our treatment the SQM EOS is almost independent of the strong coupling constant g . In this case the SQM EOS seems to get back to the EOS for the original MIT bag model. However, this treatment still has influence on the EOS for hybrid star matter and the corresponding mass-radius relations. With the increase of the strong coupling constant g , the EOS for hybrid star matter gets obviously stiff. From our treatment we notice that the pressure extra term can make a hybrid star more compact than the one described in the original EMBM and this model is more suitable to describe the hybrid stars with small radii.  相似文献   

15.
In this paper we have established the equation of state (EOS) for liquids. The EOS was established for hard-sphere (HS) fluid along with Lennard–Jones (LJ) fluid incorporating perturbation techniques. The calculations are based on suitable axiomatic functional forms for surface tension S m (r), r ≥ d/2 with intermolecular separation r, as a variable, and m is an arbitrary real number (pole). The results for βP/ρ from the present EOS thus obtained are compared with Percus-Yevick (PY), scaled particle theory (SPT), and Carnahan–Starling (CS). In addition, we have found a simple EOS for the HS fluid in the region which represents the simulation data accurately.  相似文献   

16.
We study the ground-state energy of a classical artificial molecule formed by two-dimensional clusters (artificial atoms) of N/2 charged particles separated by a distance d. For the small molecules of N = 2 and 4, we obtain analytical expressions for this energy. For the larger ones, we calculate the ground-state energy using molecular dynamics simulation for N up to 128. From our numerical results, we are able to find out a function to approximate the ground-state energy of the molecules covering the range from atoms to molecules for any inter-atom distance d and for particle number from N = 8 to 128 within a difference less than one percent from the MD data.  相似文献   

17.
We consider seven different hexagonal discrete Boltzmann models corresponding to one, two, three, and five hexagons with or without rest particles. In the microscopic collisions the number of particles associated with a given speed is not necessarily conserved, except for two models without rest particles. We compare different behaviors for the macroscopic quantities between models with and without rest particles and when the number of velocities (or hexagons) increases. We study similarity waves with two asymptotic states and consider two classes of solutions at one asymptotic state: either isotropic (densities associated with the same speed are equal) or anisotropic. Two macroscopic quantities seem useful for such studies: internal energy and mass ratio across the asymptotic states, which satisfy a relation deduced from continuous theory. Here we report results for the isotropic solutions, whoch only exist, for both models, in the subdomains where the propagation speed is larger than some well-defined value. Outside these subdomains, modifications occur when the rest particle desity becomes large. For both models we find a monotonic internal energy and subdomains with a mass ratio equal to the one in continuous theory.  相似文献   

18.
Long-duration experiments with clouds of microparticles are planned for the ICAPS facility on board the International Space Station ISS. The scientific objectives of such experiments are widespread and are ranging from the simulation of aerosol behaviour in Earths atmosphere to the formation of planets in the early solar system. It is, however, even under microgravity conditions, impossible to sustain a cloud of free-floating, microscopic particles for an extended period of time, due to thermal diffusion and due to unavoidable external accelerations. Therefore, a trap for dust clouds is required which prevents the diffusion of the particles, which provides a source of relative velocities between the dust grains and which can also concentrate the dust to higher number densities that are otherwise not achievable. We are planning to use the photophoretic effect for such a particle trap. First short-duration microgravity experiments on the photophoretic motion of microscopic particles show that such an optical particle-cloud trap is feasible. First tests of a two-dimensional trap were performed in the Bremen drop tower.  相似文献   

19.
Based on molecular dynamics (MD) computer simulations we investigate the dynamic behaviour of a model complex fluid suspension consisting of large (A) particles (the ‘solute’) immersed in a bath of smaller ‘solvent’ (B) particles. The goal is to identify the effect of systematic simplifications (coarse-graining) of the solvent on typical microscopic time correlation functions characterizing the single-particle and collective dynamics of the solute. As a reference system we employ a binary Lennard–Jones mixture of spherical particles with significant differences in particle sizes (σAB) and masses (m A>m B). We then replace the original B particles step by step by a reduced number of larger and heavier particles such that the mass and volume fraction of B particles is kept constant. At each step of coarse-graining, the intermolecular interactions between A particles are chosen such that the static A–A structure of the reference system is preserved. Our MD results indicate that coarse-graining has a profound influence on both the single-particle dynamics as reflected by the self-diffusion constant and the collective dynamics represented by the distinct part of the van Hove time correlation function. The latter holds only at intermediate packing fractions, whereas the collective dynamics turns out to be essentially insensitive to coarse-graining at high packing fractions.  相似文献   

20.
Manual segmentation of single colloidal particle in suspension encounters a bottleneck when a number of defocused particles simultaneously exist in an image. In this paper, we describe an image processing algorithm for extracting individual particle from digitized microscope images of colloidal suspensions. We propose a particle detection and location solution using a shape regularized integrated active contour model (ACM). Compared with existing methods where active contour models are not applied well to deal with multiple objects in complicated background, the proposed approach can automatically identify and locate multiple particles by combining characteristics of the particles such as shape, boundary and region. A regularization term is defined by prior information of specific shape, which is able to drive the shape of evolving curve toward the shape prior gradually. To locate the centers of the particles, the Hough transform is applied. Experimental results using polystyrene beads as sample particles reveal that the method has high efficiency and ability to deal with colloidal particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号