首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A fluorescence sensing platform based on metal–organic frameworks (MOFs) nanoparticles (NPs) of both zeolitic imidazolate framework-7 (ZIF-7) and zeolitic imidazolate framework-60 (ZIF-60) was developed for speciation analysis of inorganic Hg [Hg(II)] and methylmercury (MeHg+). Microwave-ultrasound assisted synthesis was employed for the preparation of ZIF-7 and ZIF-60 NPs, with short reaction time, easy procedure, and small particle size obtained. Based on strict cavity confinement of the ZIF-7 and ZIF-60 structures, the proposed method exhibited excellent selectivity for both Hg(II) and MeHg+, even in the presence of the other Hg species or various cations or anions with the concentration of 50 times high. Effect of pH and ionic strength on sensing behaviour of the ZIF MOF was studied as well. The calculated detection limit is 3 ng mL−1 and 6 ng mL−1 for Hg(II) and MeHg+, respectively. Furthermore, the application of the developed method to the analysis of local drinking water was demonstrated to be feasible, and the obtained recovery was 102% and 96.2% for Hg(II) and MeHg+, respectively.  相似文献   

2.
A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg2+ was complexed with I to form HgI42−, and the HgI42− reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg+) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L− 1 HNO3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg+ by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg+. The MeHg+ in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg+ with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg+, respectively. The limits of detection (LODs) were 56.3 ng L− 1 for Hg(II) and 94.6 ng L− 1 for MeHg+ (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg+ (C = 10 μg L−1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2–108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.  相似文献   

3.
A simple, rapid and accurate method on the basis of multicapillary gas chromatography (MCGC) combined with inductively coupled plasma-time-of-flight mass spectrometry (ICP-TOFMS) was developed for speciation analysis of methylmercury (MeHg+) and inorganic mercury (Hg2+). The potential of the ICP-TOFMS for transient multi-isotope detection of very short signals (peak width of 0.4 s at half peak height) was evaluated. Two injection systems (purge-and-trap (PTI) and split (SI) injections) were compared in terms of species separation resolution and transient signal profile. Using purge-and-trap injection, after in situ derivatization of the ionic mercury species with sodium tetraethylborate, a baseline separation of MeHg+ and Hg2+ was achieved within a chromatographic run of <35 s. To correct for matrix-induced ion signal variation and instrumental drift, propylmercury (PrHg+) was used as internal standard. Detection limits of 16 and 257 fg g−1 for MeHg+ (as Hg) and Hg2+, respectively, were achieved. The analytical precision (R.S.D. (%)) for 10 successive injections of a standard mixture containing 10 pg MeHg+ (as Hg) and Hg2+ was 1.2% for MeHg+ and 4.1% for Hg2+. The method was validated by analysis of two biological certified reference materials (CRM): a dogfish muscle (DORM-2) and a freeze-dried tuna fish (CRM 464).  相似文献   

4.
Selected new fluorogenic probes that interact in different ways with Hg2+ and MeHg+ have been prepared and used for the chemical speciation of both cations in aqueous solution as well as in HEK293 cells. The best selective speciation of Hg2+ and MeHg+ has been achieved by in vitro approaches based on fluorogenic probes supported in cultured cells, due to the particular sensitivity of the HEK293 cells to permeation by Hg2+, MeHg+ and the fluorogenic probes. In particular, MeHg+ was selectively detected in cell nuclei by probe JG45.  相似文献   

5.
An accurate and sensitive multi-species species-specific isotope dilution GC–ICP–MS method was developed for the simultaneous determination of trimethyllead (Me3Pb+), monomethylmercury (MeHg+) and the three butyltin species Bu3Sn+, Bu2Sn2+, and BuSn3+ in biological samples. The method was validated by three biological reference materials (CRM 477, mussel tissue certified for butyltins; CRM 463, tuna fish certified for MeHg+; DORM 2, dogfish muscle certified for MeHg+). Under certain conditions, and with minor modifications of the sample pretreatment procedure, this method could also be transferred to environmental samples such as sediments, as demonstrated by analyzing sediment reference material BCR 646 (freshwater sediment, certified for butyltins). The detection limits of the multi-species GC–ICP–IDMS method for biological samples were 1.4 ng g−1 for MeHg+, 0.06 ng g−1 for Me3Pb+, 0.3 ng g−1 for BuSn3+ and Bu3Sn+, and 1.2 ng g−1 for Bu2Sn2+. Because of the high relevance of these heavy metal alkyl species to the quality assurance of seafood, the method was also applied to corresponding samples purchased from a supermarket. The methylated lead fraction in these samples, correlated to total lead, varied over a broad range (from 0.01% to 7.6%). On the other hand, the MeHg+ fraction was much higher, normally in the range of 80–100%. Considering that we may expect tighter legislative limitations on MeHg+ levels in seafood in the future, we found the highest methylmercury contents (up to 10.6 μg g−1) in two shark samples, an animal which is at the end of the marine food chain, whereas MeHg+ contents of less than 0.2 μg g−1 were found in most other seafood samples; these results correlate with the idea that MeHg+ is usually of biological origin in the marine environment. The concentration of butyltins and the fraction of the total tin content that is from butyltins strongly depend on possible contamination, due to the exclusively anthropogenic character of these compounds. A broad variation in the butylated tin fraction (in the range of <0.3–49%) was therefore observed in different seafood samples. Corresponding isotope-labeled spike compounds (except for trimethyllead) are commercially available for all of these compounds, and since these can be used in the multi-species species-specific GC-ICP-IDMS method developed here, this technique shows great potential for routine analysis in the future.  相似文献   

6.
The first detailed determination of mercury(II) [Hg(II)] and monomethylmercury cation (MeHg+) concentrations in eelgrass (Zostera marina L.) is described. The rapid and simple method includes digestion by the new reagent tetrabutylammonium bromide/potassium hydroxide, derivatization by sodium borohydride and detection by hydride generation–cold vapor atomic fluorescence spectrometry. Mercury in leaves/stems and roots/rhizomes of eelgrass samples collected near Adams Point of the Great Bay Estuary, NH, from May to November of the 1997 growing season was speciated. The seasonal ranges of concentrations in leaves and stems of eelgrass are: Hg(II), 14.9–40.4 ng Hg g−1 dry weight; MeHg+, 1.06–3.89 ng Hg g−1 dry weight. MeHg+ content averaged 6.9% of total mercury. Analogous values for roots and rhizomes are: Hg(II) 15.4–57.7 ng Hg g−1 dry weight; MeHg+ 0.91–2.41 ng Hg g−1 dry weight; MeHg+ averaged 6.4% of total mercury. The non‐parametric Kendall test showed that Hg(II) and MeHg+ concentrations in leaves and stems increased from May to July, then decreased. For roots and rhizomes the Kendall test showed that Hg(II) concentrations were unchanged from May to August, then decreased, and that MeHg+ concentrations decreased throughout the growing season. The non‐parametric Wilcoxon Signed‐Ranks method showed no systematic difference in Hg(II) or MeHg+ concentrations between leaves/stems and roots/rhizomes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
We have combined short-column ion chromatographic separation and on-line photocatalyst-assisted vapor generation (VG) techniques with inductively coupled plasma mass spectrometry to develop a simple and sensitive hyphenated method for the determination of aqueous Hg2+ and MeHg+ species. The separation of Hg2+ and MeHg+ was accomplished on a cation-exchange guard column using a glutathione (GSH)-containing eluent. To achieve optimal chromatographic separation and signal intensities, we investigated the influence of several of the operating parameters of the chromatographic and photocatalyst-assisted VG systems. Under the optimized conditions of VG process, the shortcomings of conventional SnCl2-based VG techniques for the vaporization of MeHg+ was overcome; comparing to the concentric nebulizer-ICP-MS system, the analytical sensitivity of ICP-MS toward the detection of Hg2+ and MeHg+ were also improved to 25- and 7-fold, respectively. With the use of our established HPLC–UV/nano-TiO2–ICP-MS system, the precision for each analyte, based on three replicate injections of 2 ng/mL samples of each species, was better than 15% RSD. This hyphenated method also provided excellent detection limits—0.1 and 0.03 ng/mL for Hg2+ and MeHg+, respectively. A series of validation experiments—analysis of the NIST 2672a Standard Urine Reference Material and other urine samples—confirmed further that our proposed method could be applied satisfactorily to the determination of inorganic Hg2+ and MeHg+ species in real samples.  相似文献   

8.
Production of artifact methylmercury (MeHg+) during the analysis of two certified reference sediments, CRM-580 and IAEA-405, was investigated. Leaching of the analyte from the solid sample was achieved by ultrasound assisted acidic extraction. The aqueous leachate was either ethylated (NaBEt4) or phenylated (NaBPh4) using acetic/acetate or citric/citrate to buffer the solution. Preconcentration of the volatile compounds was carried out by extraction with an organic solvent (n-hexane) or solid phase microextraction (SPME). MeHg+ was finally separated and detected by gas chromatography with atomic emission or mass spectrometry detection (GC-MIP-AED or GC-MS). In all the cases the concentrations obtained for MeHg+ in the CRM-580 were significantly higher than the certified value. For the IAEA-405, however, the MeHg+ concentration found was always statistically indistinguishable from the certified value. Experiments were also conducted with synthetic samples, such as aqueous mixtures of MeHg+ and inorganic mercury (Hg2+) or silica-gel spiked with both compounds. The methylation rates found (defined as the percentage of Hg2+ present in the sample which methylates to give artifact MeHg+) ranged from not observable (in certain synthetic aqueous mixtures) to 0.57% (analysis of CRM-580 under certain conditions). As the amount of Hg2+ available in the sample seems to be the main factor controlling the magnitude of the artifact, several experiments were conducted using an ionic exchange resin (Dowex M-41) in order to minimise the concentration of this chemical in the reaction medium. First, a hydrochloric leachate of the sample was passed through a microcolumn packed with the exchanger. Second, the resin was mixed with the sample prior to extraction with HCl. In both cases, the predominant Hg2+ species, HgCl42−, was adsorbed on the resin, whereas MeHg+, mainly as MeHgCl, remained in solution. Following the second option, a new method to analyse MeHg+ in conflictive matrices like certain sediments was proposed. This approach produced better results for the CRM-580, but a MeHg+ concentration slightly, but statistically significant, higher than the reference value was still obtained.  相似文献   

9.
A non-chromatographic method for Hg speciation in fish muscle using eco-scale thermal desorption atomic absorption spectrometry was validated according to the demands of the Decisions 2007/333/EC, 2011/836/EC and 2002/657/EC. The method is based on the determination of total Hg in solid sample and MeHg+, respectively, after double liquid–liquid extraction (47% HBr, toluene, 1% l-cysteine) according to a procedure recommended by the European Commission. The method was applied for the speciation of Hg in fish muscle to asses the weekly intake and health risk exposure to MeHg+. The method provided calibration coefficients better than 0.999, limits of detection of 0.2 µg kg?1 total Hg and 3.0 µg kg?1 MeHg+. The accuracy of the method assessed by the analysis of CRMs was 100 ± 9% for total Hg and 101 ± 13% for MeHg+ for a coverage factor k = 2. The figures of merit of the method comply with the requirements in the European legislation. Total Hg in the analyzed fish species was in the range 12–108 µg kg?1 wet mass, of which 83–97% as MeHg+. Although significant variation in total Hg was observed among fish species, no differences in terms of distribution of organic and inorganic Hg species were identified. No risk exposure to MeHg+ was ascertained from muscle fish consumption from reliable sources, since weekly intake was below 30% of provisional tolerable weekly intake of 1.6 µg kg?1 body weight. Speciation is recommended as MeHg+ is much more helpful than total Hg to evaluate the dietary risk exposure.  相似文献   

10.
An ionic liquid (IL) based dispersive liquid–liquid microextraction combined with HPLC hydride generation atomic fluorescence spectrometry method for the preconcentration and determination of mercury species in environmental water samples is described. Four mercury species (MeHg+, EtHg+, PhHg+, and Hg2+) were complexed with dithionate and the neutral chelates were extracted into IL drops using dispersive liquid–liquid microextraction. Variables affecting the formation and extraction of mercury dithizonates were optimized. The optimum conditions found were as follows: IL‐type and amount, 0.05 g of 1‐octyl‐3‐methylimidazolium hexafluorophosphate; dispersive solvents type and amount, 500 μL of acetone; pH, 6; extraction time, 2 min; centrifugation time, 12 min; and no sodium chloride addition. Under the optimized conditions, the detection limits of the analytes were 0.031 μg/L for Hg2+, 0.016 μg/L for MeHg+, 0.024 μg/L for EtHg+, and 0.092 μg/L for PhHg+, respectively. The repeatability of the method, expressed as RSD, was between 1.4 and 5.2% (n = 10), and the average recoveries for spiked test were 96.9% for Hg2+, 90.9% for MeHg+, 90.5% for EtHg+, 92.3% for PhHg+, respectively. The developed method was successfully applied for the speciation of mercury in environmental water samples.  相似文献   

11.
This paper describes a preconcentration method for Hg2+ and MeHg+ in water samples using sodium diethyldithiocarbamate immobilized in polyurethane foam (PU-NaDDC) and an extraction method for several mercury species in sediment samples, including MeHg+, EtHg+ and PhHg+, which is simple, rapid, and uses a single organic solvent. Separation and measurement were done by high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Initially, the test of recovery was applied using procedures compatible with HPLC. Under the optimum extraction conditions, recoveries of 96.7, 96.3 and 97.3% were obtained for MeHg+, EtHg+, and PhHg+, respectively, from n = 4 spiked sediment samples. This study also demonstrates that the combination of solid-phase extraction on PU-NaDDC with HPLC separation and ICP-MS detection is an effective preconcentration procedure for simultaneous measurement of Hg2+ and MeHg+ at ultra-trace levels in water samples. The application of the proposed procedure to the determination of mercury species in drinking water sample was investigated. The proposed method clearly gave satisfactory average recoveries between 93.7 and 101.5%.  相似文献   

12.
The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg+) and mercury (Hg2+) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg+ and Hg2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL−1 for MeHg+ and 0.0014 ng mL−1 for Hg2+, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL−1 MeHg+ and Hg2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.  相似文献   

13.
A modified automated on-line hyphenated system for simultaneous inorganic ionic mercury (Hg2+) and monomethylmercury (MeHg+) analysis by hydride generation (HG) or ethylation (Eth), cryofocussing, gas chromatography (GC) separation and atomic fluorescence spectrometry (AFS) detection has been improved. Both derivatization methods are investigated with respect to the chromatographic and analytical performances. They can be both affected by interferences when the AFS detection system is used. Water vapor removal using a soda lime moisture trap improves significantly the chromatographic performances, the reproducibility and the detection limits for Hg2+ and MeHg+ analyzed with both methods. For ethylation (Eth) derivatization, a scattering interference generated from low-quality ethylation reagent has also been eliminated. For HG, improved detection limits are 0.13 ng l−1 and 0.01 ng l−1 for Hg2+ and MeHg+, respectively (0.1 l water sample), and reproducibility are 5% for Hg2+ (20 ng l−1) and MeHg+ (5 ng l−1). Improved detection limits for Eth are 0.22 ng g−1 for Hg2+ and 0.02 ng g−1 for MeHg+ (1 g dry sediment sample) and the reproducibility are 5-6% for Hg2+ and MeHg+ (1-2 ng g−1).  相似文献   

14.
A simple non-chromatographic method for the determination of mercury (Hg2+), methylmercury (MeHg+), dimethylmercury (Me2Hg), and phenylmercury (PhHg+) employing atomic fluorescence spectrometry (AFS) as detection technique was developed. Mercury species showed a particular behavior in the presence of several reagents. In a first stage SnCl2 was employed for Hg2+ determination; in a second step, [Hg2+ + PhHg+] concentration was determined using SnCl2 and UV radiation. MeHg+ decomposition was prevented adding 2-mercaptoethanol. In a third stage, [Hg2+ + PhHg+ + MeHg+] concentration was determined using K2S2O8. Finally, the four species were determined employing NaBH4. Reagents concentration and flow rates were optimized. The extraction technique of mercury species involved the use of 2-mercaptoethanol as ion-pair reagent. The limits of detection for Hg2+, PhHg+, MeHg+, and Me2Hg were 1, 40, 68, and 99 ng L−1 with a relative standard deviation of 1.5, 3.1, 4.7 and 5.8%, respectively. Calibration curve was linear with a correlation factor equal to 0.9995. The method was successfully applied to the determination of the mercury species in two Antarctic materials: IRMM 813 (Adamussium colbecki) and MURST-ISS-A2 (Antarctic Krill).  相似文献   

15.
The use of high‐performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICP‐MS) for the determination of methylmercury (MeHg+) in fish tissue and hair samples is described. Analysis of these sample types is required when carrying out biomonitoring studies to determine human dietary exposure to this toxic mercurial compound. The developed method used a mobile phase containing an organic modifier and a sulfydryl compound (1:1 v/v methanol:water containing 0.01% v/v 2‐mercaptoethanol) to limit peak tailing and aid separation. The chromatographic separation was coupled to the ICP‐MS detector via a short piece of PEEK tubing, attached to the nebulizer. A cooled spraychamber and oxygen addition post‐nebulization were required to limit the solvent loading on the plasma and reduce carbon build‐up on the cones, respectively. The sample preparation procedure employed a drying step followed by digestion of the sample using tetramethylammonium hydroxide (TMAH) and heating in an open vessel microwave system. Two fish tissue certified reference materials (CRM), tuna fish CRM 463 and 464 (BCR, Brussels), a tuna fish proficiency test sample, IMEP‐20 (IRMM, Geel, Belgium) and a hair CRM NIES no. 13 (National Institute of Environmental Science, Japan), were used to evaluate the method. The recovery of MeHg+ for these four materials was between 83 and 100%, with precisions better than 6% for three separate extractions of the different materials. The limit of quantitation for MeHg+ using the developed protocol was 0.5 µg Hg g?1. The stability of MeHg+ in the fish sample extracts was also assessed and losses of 14–16% were observed after storage of the extracts in a refrigerator at 5 °C, in high‐density polypropylene tubes, for 6 months. The developed protocol has been used previously with atmospheric pressure ionization mass spectrometry (API‐MS) to provide structural characterization and also with calibration via isotope dilution (IDMS) to provide high accuracy quantitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The cloud point extraction (CPE) preconcentration of ultra-trace amount of mercury species prior to reverse-phase high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was studied. Mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were transformed into hydrophobic chelates by reaction with sodium diethyldithiocarbamate, and the hydrophobic chelates were extracted into a surfactant-rich phase of Triton X-114 upon heating in a water bath at 40 °C. Ethylmercury was found partially decomposed during the CPE process, and was not included in the developed method. Various experimental conditions affecting the CPE preconcentration, HPLC separation, and ICP-MS determination were optimized. Under the optimized conditions, detection limits of 13, 8 and 6 ng l−1 (as Hg) were achieved for MeHg+, PhHg+ and Hg2+, respectively. Seven determinations of a standard solution containing the three mercury species each at 0.5 ng ml−1 level produced relative standard deviations of 5.3, 2.3 and 4.4% for MeHg+, PhHg+ and Hg2+, respectively. The developed method was successfully applied for the determination of the three mercury species in environmental water samples and biological samples of human hair and ocean fish.  相似文献   

17.
Methylation and demethylation of mercury compounds are two important competing processes that control the net production of highly toxic mercury alkyls, methylmercury (MeHg+) and dimethylmercury (Me2Hg), in environment. Although the microbial and the photochemical methylation and demethylation processes are well studied in recent years but the chemical methylation and demethylation processes have not been studied well. Herein, we report for the first time that the CuSe nanosheet has remarkable ability to activate the highly inert Hg?C bonds of various MeHg+ and Me2Hg compounds at room temperature (21 °C). It facilitates the conversion of MeHg+ into Me2Hg in the absence of any proton donors. Whereas, in the presence of any proton source, it has unique ability to degrade MeHg+ into CH4 and inorganic mercury (Hg2+). Detailed studies revealed that the relatively fast Hg?C bond cleavage was observed in case of MeHgSPh or MeHgI in comparison to MeHgCl, indicating that the Hg?C bond in MeHgCl is relatively inert in nature. On the other hand, the Hg?C bond in Me2Hg is considered to be exceedingly inert and, thus, difficult to cleave at room temperature. However, CuSe nanosheets showed unique ability to degrade Me2Hg into CH4 and Hg2+, via the formation of MeHg+, under acidic conditions at room temperature. DFT calculations revealed that the Hg?C bond activation occurs through adsorption on the surface of (100)‐faceted CuSe nanosheets.  相似文献   

18.
A novel approach for preconcentration and speciation analysis of trace amount of mercury from water samples was proposed by dispersive liquid–liquid microextraction (DLLME) coupled to high performance liquid chromatography with diode array detection (HPLC-DAD). Mercury species (Hg2+, methylmercury (MeHg+) and phenylmercury (PhHg+)) were complexed with dithizone (DZ) to form hydrophobic chelates and then extracted into the fine drops of extraction solvent dispersed in the aqueous sample by dispersive solvent. After extraction, the sedimented phase was analyzed by HPLC-DAD. Some important parameters affecting the DLLME such as extraction solvent and dispersive solvent type and volume, concentration of dithizone solution, sample pH, extraction time and salt effect were investigated. Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]) was found to be a suitable extractant for the chelates. Under the optimized conditions (extraction solvent: 70 μL of ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM][PF6]); dispersive solvent: 0.75 mL of methanol containing dithizone (0.02%, m/v); pH: 4; extraction time: 5 min; and without salt addition), the limits of detection for Hg2+, MeHg+ and PhHg+ were 0.32, 0.96 and 1.91 μg L−1 (S N−1 = 3) respectively, and the relative standard deviation (RSD) was between 4.1 and 7.3% (n = 5). Three real water samples (tap water, river water and lake water) spiked with mercury species were detected by the developed method, and the relative recoveries obtained for Hg2+, MeHg+ and PhHg+ were 89.6–101.3%, 85.6–102.0% and 81.3–97.6%, respectively.  相似文献   

19.
Trace amounts of inorganic mercury (Hg2+) and methylmercury cations (MeHg2+) were adsorbed quantitatively from acidic aqueous solution onto a column packed with immobilized dithizone on microcrystalline naphthalene. The trapped mercury was eluted with 10 ml of 7 mol L–1 hydrochloric acid solution. The Hg2+ was then directly reduced with tin (II) chloride, and volatilized mercury was determined by cold vapor atomic absorption spectrometry (CVAAS). Total mercury (Hgt) was determined after decomposition of MeHg+ into Hg2+. Hg2+ and MeHg+ cations were completely recovered from the water with a preconcentration factor of 200. The relative standard deviation obtained for eight replicate determinations at a concentration of 0.3 g L–1 was 1.8%. The procedure was applied to analysis of water samples, and the accuracy was assessed via recovery experiment.  相似文献   

20.
Different sub-sampling procedures were applied for the determination of mercury species (as total mercury Hg, methylmercury MeHg+ and inorganic mercury Hg2+) in frozen fish meat. Analyses were carried out by two different techniques. After the sample material was pre-treated by microwave digestion, atomic fluorescence spectroscopy (AFS) was used for the determination of total Hg. Speciation analysis was performed according to the following procedure: dissolution of sample material in tetramethylammonium hydroxide (TMAH), derivatisation with sodium tetraethylborate (NaBEt4), extraction into isooctane and measurement with gas chromatography inductively coupled plasma mass spectrometry (GC-ICPMS) for the identification and quantification of methylmercury (MeHg+) and inorganic mercury (Hg2+). The concentration range of total Hg measured in the shark fillets is between 0.9 and 3.6 g g–1 thawed out shark fillet. Speciation analysis leads to 94% Hg present as MeHg+. Homogeneity, storage conditions and stability of analytical species and sample materials have great influence on analytical results. Sub-sampling of half-frozen/partly thawed out fish and analysis lead to significantly different concentrations, which are on average a factor of two lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号