首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钟琳  肖建良  李灿 《催化学报》2007,28(8):673-675
通过将手性胺和酸基团同时引入到二氧化硅表面制备得到了一种多相双功能催化剂.该催化剂在不对称直接Aldol反应中表现出中等的催化活性和对映选择性(ee值最高可达60%以上).催化剂中手性胺和酸基团的协同作用对反应的活性和手性诱导至关重要.  相似文献   

2.
Free and trioctylamine (TOA)-stabilized ruthenium nanoparticles have been prepared by decomposition of the metal precursor Ru(η6-cycloocta-1,3,5-triene)(η4-cycloocta-1,5-diene) under mild conditions (room temperature, hydrogen atmospheric pressure). The nanoparticles have been deposited on γ-Al2O3 supports having different surface area. The resulting systems are active in the hydrogenation of methyl benzoate to methyl cyclohexanoate with a reaction rate decreasing in the order Ru(TOA)/γ-Al2 O3 (high surface area, catalyst D) > Ru(TOA)/γ-Al2O3 (catalyst C) > Ru/γ-Al2O3 (high surface area, catalyst B) > Ru/γ-Al2O3 (catalyst A). Catalysts A-D are long lived and can be reused without loss of activity; they are considerably more active than a commercial ruthenium on γ-Al2O3 sample. High Resolution Transmission Electron Microscopy analyses of such systems show that the nanoparticles are homogeneously dispersed on the support and that the size distribution decreases in the order catalyst A, 2.9 nm > catalyst B, 2.8 nm > catalyst C, 2.4 nm > catalyst D, 2.3 nm. Based on the easy hydrogenation of the aromatic ring to the cyclohexane derivative, an efficient synthesis of 4-carbomethoxyformylcyclohexane, important starting material in the preparation of pharmaceutical products, from the largely available methyl 4-formylbenzoate, has been set up in the presence of catalyst D.  相似文献   

3.
The reactivity of a novel zerovalent ruthenium complex, Ru(η6-cot)(η2-dmfm)2 (cot = 1,3,5-cyclooctatriene, dmfm, =dimethyl fumarate), which is readily prepared from Ru(η4-cod)(η6-cot) (cod = 1,5-cyclooctadiene) and dmfm was examined. The reaction with monodentate phosphine or amine ligands gave Ru(η6-cot)(dmfm)(L) (L = ligand) via dissociation of dmfm. Among bidentate phosphines, dppm (dppm = bis(diphenylphosphino)methane) reacted to give Ru(η4-cot)(dmfm)(dppm) along with releasing a dmfm ligand. In the case of dppe (dppe = 1,2-bis(diphenylphosphino)ethane), two types of complexes were obtained depending on the reaction conditions, Ru(dmfm)(dppe)2 and an alkyl alkenyl complex; in the formation of the latter complex, sp2 C-H bond activation of dmfm occurred. Ru(η4-cot)(dmfm)(N?N) and Ru(dmfm)2 (N?N?N) were formed by reacting with bidentate and tridentate nitrogen ligands. The reactions with arenes gave π-coordinated complexes, Ru(η6-arene)(dmfm)2. p-Quinones and a p-biqunone reacted to give Ru(η6-cot)(p-quinone) and {Ru(η6-cot)}2(p-biquinone), respectively, along with the dissociation of two dmfm ligands. It was found that low-valent ruthenium complexes preferably bear both electron-donating and accepting ligands simultaneously to be thermodynamically stable.  相似文献   

4.
The discovery and development of conceptually new chiral bifunctional transition metal-based catalysts for asymmetric reactions is described. The chiral bifunctional Ru catalyst was originally developed for asymmetric transfer hydrogenation of ketones and imines and is now successfully applicable to enantioselective C-C bond formation reaction with a wide scope and high practicability. The deprotonation of 1,3-dicarbonyl compounds with the chiral amido Ru complexes leading to the amine Ru complexes bearing C- or O-bonded enolates, followed by further reactions with electrophlies gives C-C bond formation products. The present bifunctional Ru catalyst offers a great opportunity to open up new fundamentals for stereoselective molecular transformation including enantioselective C-H and C-C as well as C-O, C-N bond formation.  相似文献   

5.
The reactions of ruthenium(II)-arene complex [RuII6-p-cym)(pydc)Cl] (where p-cym = p-isopropyl toluene, pydc = 2,3-pyridinedicarboxylato) with biologically nitrogen-donor nucleophiles, such as guanosine-5′-monophosphate (5′-GMP), guanosine (Guo) and l-histidine (l-His) were studied by UV-Vis spectrophotometry and 1H NMR spectroscopy. The reactions were studied at pH 2.5 and at 7.2. All reactions were followed under pseudo-first order conditions with large excess of the nucleophiles. The selected nucleophiles have a high affinity for Ru(II)-arene complex. The reactivity of the used ligands follow the same order at both pH values: Guo > 5′-GMP > l-His, while the reactions at pH 7.2 are always faster. The negative entropies of activation (ΔS) support an associative mode of activation. However, the rate constants obtained by 1H NMR at 295 K in D2O follow the same order of the ligand reactivity. The hydrolysis of the [RuII6-p-cym)(pydc)Cl] complex was very fast and completed by the time the first spectrum was measured. Addition of excess of NaCl to equilibrium solutions reversed the hydrolysis.  相似文献   

6.
The phenanthrene complex of ruthenium(II), [Ru(η6-phenanthrene)(1,5-η5-cyclooctadienyl)]PF6 (2c), is prepared by the reaction of Ru(η4-1,5-COD)(η6-1,3,5-COT) (1) with phenanthrene and HPF6 in 65% yield. Similar treatments with di- tri-, tetra- and pentacyclic arenes give corresponding polycyclic arene complexes, [Ru(η6-polycyclic arene)(1-5-η5-cyclooctadienyl)]PF6 [polycyclic arene = naphthalene (2b), anthracene (2d), triphenylene (2e), pyrene (2f) and perylene (2g)] in 46-90% yields. The molecular structure of the perylene complex 2g is characterized by X-ray crystallography. Reaction of 2c with NaBH4 gives a mixture of the 1,5- and 1,4-COD complexes of ruthenium(0), Ru(η6-phenanthrene)(η4-1,5-COD) (3c) and Ru(η6-phenanthrene)(η4-1,4-COD) (4c) in 76% in 1:8 molar ratio. The arene exchange reactions among cationic complexes [Ru(η6-arene)(1-5-η5-cyclooctadienyl)]PF6 (2) showed the coordination ability of arenes in the following order: benzene ∼ triphenylene > phenanthrene > naphthalene > perylene ∼ pyrene > anthracene, suggesting the benzo fused rings, particularly those of acenes, decreasing thermal stability of the arene complex.  相似文献   

7.
Yan Zhou 《Tetrahedron》2006,62(24):5692-5696
Asymmetric catalysis of chiral spiroborate esters with an O3BN framework toward the direct aldol reaction of acetone and aromatic aldehydes was examined, and a new, efficient chiral catalyst was discovered. In the presence of the novel catalyst, acetone was allowed to react with aromatic aldehydes at 0 °C for 50 h to afford chiral β-hydroxyketone in up to >99% ee and 92% yield. The catalyst, which is readily synthesized, is highly stable to hydrolysis, thermolysis, oxidation, and racemization, can be conveniently recovered.  相似文献   

8.
Metallocene complexes in combination with cocatalysts like methylalumoxane (MAO) are not only excellent catalysts for olefin polymerization but also appropriate catalysts for the activation of alkanes in homogeneous (autoclave) and heterogeneous (fixed bed reactor) reactions. The activities of the catalysts depend on the temperature, the cocatalysts, additives, the central metal and the ligand structure. Generally, complexes with low steric demands and MAO as cocatalyst gave the highest activities. The comparison of different π-ligands resulted in the following activity order: cyclopentadienyl > indenyl > fluorenyl. The influence of σ-ligands and n-donor ligands gave the following activity order: -Cl > -PMe3 > -CH2Ph > -(CH2)4CH3 > -NPh3. The activities depended on the nature of the cocatalyst and decreased in the following order: MAO ? AlMe3 > AlEt3. The addition of aluminum powder and the Lewis base NPh3 increased the activity of the Cp2ZrCl2/MAO catalyst. The Cp2ZrCl2/MAO/NPh3 catalyst showed the highest activity in homogeneous reactions with 458 turnovers in 16 h at 300 °C. The Cp2ZrCl2/MAO/NPh3/SI1102 catalyst gave the highest activity in heterogeneous catalysis with 206 turnovers in 5 h at 350 °C. None of the catalysts required a hydrogen acceptor like an external olefin.  相似文献   

9.
Baiqing Zeng 《Tetrahedron》2007,63(24):5129-5136
A novel bifunctional asymmetric catalyst containing N-oxide and titanium(IV) was developed and applied to the asymmetric cyanosilylation of aldehydes. Optically active trimethylsilyl cyanohydrin ethers were obtained up to 99% yield and 80% ee in the presence of 5 mol % catalyst loading at −78 °C. Based on the experimental results, the catalytic cycle was proposed as a pathway in which Lewis acid and Lewis base activated aldehyde and trimethylsilylcyanide (TMSCN), respectively.  相似文献   

10.
The relatively inexpensive chiral monodentate phosphoramidite (S)-MONOPHOS may be used in combination with pyridines to prepare iridium complexes effective for catalysis of asymmetric imine hydrogenation with comparable enantioselectivity to some of those containing more costly chiral bidentate phosphines. [Ir(cod)((S)-MONOPHOS)(L)]BArF (cod = 1,5-cyclooctadiene; L = 3-methylisoquinoline, acridine, 2,6-lutidine, acetonitrile, or 2,3,3-trimethylindolenine; BArF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) are efficient catalysts for the asymmetric hydrogenation of 2,3,3-trimethylindolenine. An important observation is that the catalyst containing acridine is more enantioselective than the catalyst derived from 2,3,3-trimethylindolenine which suggests that the other N-donor ligands are not readily displaced by the substrate during the catalytic cycle.  相似文献   

11.
The rhodium complex trans-[Rh(CO)(Hdpf-κP)(dpf-κ2O,P)] (1), (Hdpf = 1′-(diphenylphosphino)ferrocenecarboxylic acid) was used as an efficient and recyclable catalyst for 1-hexene hydroformylation producing ca. 80% of aldehydes at 10 atm CO/H2 and 80 °C. After the reaction, unchanged complex 1 was separated from the reaction mixture and used again three times with the same catalytic activity. The effect of modifying ligands, phosphines and phosphites, on the reactivity of 1 was investigated. The active catalytic systems containing 1 or trans-[Rh(CO)(L)(dpf-κ2O,P)] (2) were formed in situ from acetylacetonato rhodium(I) precursors [Rh(CO)2(acac)] (3) or [RhL(CO)(acac)] (4) and Hdpf or Medpf (L = phosphine, Medpf = methyl ester of Hdpf).  相似文献   

12.
The bifunctional chiral thiourea-tertiary amine organocatalysts have been applied to a direct asymmetric vinylogous Michael addition of α,α-dicyanoolefins to nitroolefins with 2-10 mol % catalyst loadings. The electronic properties of the thiourea-based catalysts have significant influences on this reaction. Moderate to excellent enantioselectivities (57-95% ee) have been achieved with low to good isolated yields through fine tuning the structures of the bifunctional organocatalysts. Much better ees were obtained for some α,α-dicyanoolefinic substrates compared with that catalyzed by modified cinchona alkaloids.  相似文献   

13.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

14.
Ionic liquid was found to be an excellent medium for asymmetric Diels-Alder reaction catalyzed by chiral bis(oxazoline)-copper complex. The reactivity and selectivity of reactions were highly dependent upon the property of the ionic liquids. Reactions of β-substituted acryloyl dienophiles in [Bmim]SbF6 at ambient temperature provided remarkably enhanced reactivity and stereoselectivity compared to homogeneous reactions in non-ionic liquid solvent at −78 °C. Due to the increased reactivity, the amount of metal catalyst could be reduced down to 0.6 mol % without any significant selectivity compromise. Additionally, recycling of the ligand-metal complex was achieved efficiently up to 18 times.  相似文献   

15.
The highly enantioselective hydrogenation of methyl 4-tert-butylcarbamoyl-3-oxo-butyrate to the corresponding secondary alcohol, representing an interesting chiral building block, for example, for the synthesis of statins, has been investigated in the presence of homogeneous chiral Rh(I) and Ru(II) complexes bearing phosphine ligands. The highest enantioselectivity (up to 96%) was achieved with a [Ru((R)-BINAP)(p-cymene)Cl]Cl complex (sub./cat. ratio 100:1, 5 bar H2, rt, MeOH).  相似文献   

16.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

17.
A novel catalyst system of Pd(OAc)2-HFIP induces double-bond migration of allylbenzenes under mild conditions with low catalytic loading to afford 1-propenylbenzenes. The reaction shows a unique substituent effect that is highly dependent on the distance of substituents from the allylic moiety. Thus, the reactivity of substrates bearing a methyl group is ordered in para > meta > ortho, whereas it is entirely reversed as ortho > meta > para for methoxy and chloro substituents.  相似文献   

18.
The transacetalization of 2-alkoxy-4-benzylidenetetrahydrofurans with alcohols proceeds smoothly with the aid of Fe(ClO4)3 catalyst. The catalyst reactivity is ordered as Fe(ClO4)3 > Zn(ClO4)2 > Mg(ClO4)2. The present transacetalization provides an entry for various 2-alkoxytetrahydrofurans, which have potential as anticancer agents.  相似文献   

19.
Pt/porous-IrO2 composite as bifunctional oxygen electrocatalyst for unitized regenerative fuel cell has been prepared by chemical reduction of Pt on porous IrO2 which is obtained via template-removal method. X-ray diffraction and transmission electron microscopy characterizations indicate that the Pt nanoparticles (ca. 4.4 nm) are deposited on both internal and external sites of porous IrO2 nanoparticles. Electrochemical analyses show that the activity toward oxygen evolution reaction on Pt/porous-IrO2 catalyst is 28% (at 1.55 V) higher than that on Pt/commercial-IrO2 catalyst, and the activity towards oxygen reduction reaction on the former is 2.3 times (at 0.85 V) that on the latter. Oxygen reduction on Pt/porous-IrO2 catalyst follows the first-order kinetics and the four-electron mechanism.  相似文献   

20.
The ruthenium complex prepared from [RuCl2(p-cymene)]2 and (1S,2R)-1-amino-2-indanol is a very efficient catalyst for the asymmetric transfer hydrogenation of (R)-N-(tert-butanesulfinyl)ketimines in isopropanol. By carefully removing all possible moisture from the reaction medium, chiral primary amines with very high optical purities (up to >99% ee) can be easily prepared in excellent yields by the diastereoselective reduction of the imines followed by removal of the sulfinyl group under mild acidic conditions. Reaction times of 1-4 h were needed to complete the reduction reactions when they were performed at 40 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号