首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A limiting flux model has been recently developed for predicting the fouling behavior of reverse osmosis and nanofiltration membranes by organic macromolecules [C.Y. Tang, J.O. Leckie, Membrane independent limiting flux for RO and NF membranes fouled by humic acid, Environmental Science and Technology 41 (2007) 4767–4773]. Several interesting results have been observed: (a) there was a maximum pseudo-stable flux (the limiting flux) beyond which further increase in applied pressure did not translate to a greater stable flux; (b) all membrane samples attained the limiting flux under constant pressure conditions as long as their initial flux was greater than the limiting flux; (c) the limiting flux did not depend on the properties of membranes; (d) the limiting flux had strong dependence on the feedwater composition, such as pH, ionic strength, and divalent ion concentration. The current study investigates the dependence of limiting flux on intermolecular interaction between foulant molecules. It was observed that the limiting flux was directly proportional to the intermolecular electrostatic repulsive force and that conditions enhancing foulant-deposited-foulant repulsion resulted in greater limiting flux values. Such observations agree well with a theoretical model capturing both hydrodynamic and DLVO interactions. Interaction force measurements by atomic force microscopy (AFM) were also performed. The limiting flux correlated reasonably well with AFM interaction force between the model foulant and the fouled membrane surface.  相似文献   

2.
Fouling of cellulose triacetate(CTA) forward osmosis(FO) membranes by natural organic matter(NOM) was studied by means of a cross-flow flat-sheet forward osmosis membrane system. The NOM solution was employed as the feed solution(FS), and a sodium chloride solution(3 mol/L) was used for the draw solution(DS). The process was conducted at various temperatures and cross-flow velocities. The flux decline was investigated with 3 h forward osmosis operation. The substances absorbed on the membranes were cleaned by ultrasonic oscillation of the fouled membranes and were characterized by methodologies including fluorescence excitation-emission matrices (EEMs) and liquid chromatography with an organic carbon detector(LC-OCD), and the variations of membrane properties were also investigated by Fourier transform infrared spectrometer(FTIR) and a contact angle meter. It was noted that the rejection efficiency of NOM is remarkable and that ultrasonic oscillation is an effective method to extract the NOM fouled on the CTA membranes after FO process. A higher cross-flow velocity and lower temperature benefit the anti-fouling capacity of the membrane significantly. Although humic substances accounted for the majo- rity of the NOM, aromatic proteins and amino acids were the main fouling components on the membranes, with symbolic FTIR peaks at 2355, 1408 and 873 cm-1. The present surface foulant made the membranes becoming more hydrophilic, as demonstrated by a significant decrease in contact angle(ranging from 20% to 46%) under all the operation conditions.  相似文献   

3.
Colloidal interactions and fouling of NF and RO membranes: a review   总被引:3,自引:0,他引:3  
Colloids are fine particles whose characteristic size falls within the rough size range of 1-1000 nm. In pressure-driven membrane systems, these fine particles have a strong tendency to foul the membranes, causing a significant loss in water permeability and often a deteriorated product water quality. There have been a large number of systematic studies on colloidal fouling of reverse osmosis (RO) and nanofiltration (NF) membranes in the last three decades, and the understanding of colloidal fouling has been significantly advanced. The current paper reviews the mechanisms and factors controlling colloidal fouling of both RO and NF membranes. Major colloidal foulants (including both rigid inorganic colloids and organic macromolecules) and their properties are summarized. The deposition of such colloidal particles on an RO or NF membrane forms a cake layer, which can adversely affect the membrane flux due to 1) the cake layer hydraulic resistance and/or 2) the cake-enhanced osmotic pressure. The effects of feedwater compositions, membrane properties, and hydrodynamic conditions are discussed in detail for inorganic colloids, natural organic matter, polysaccharides, and proteins. In general, these effects can be readily explained by considering the mass transfer near the membrane surface and the colloid-membrane (or colloid-colloid) interaction. The critical flux and limiting flux concepts, originally developed for colloidal fouling of porous membranes, are also applicable to RO and NF membranes. For small colloids (diameter?100 nm), the limiting flux can result from two different mechanisms: 1) the diffusion-solubility (gel formation) controlled mechanism and 2) the surface interaction controlled mechanism. The former mechanism probably dominates for concentrated solutions, while the latter mechanism may be more important for dilute solutions. Future research needs on RO and NF colloidal fouling are also identified in the current paper.  相似文献   

4.
This review addressed the fundamental principles, advantages and challenges of forward osmosis (FO) membrane processes. FO is receiving more and more research attractions because it can concurrently produce clean water with low energy input and generate hydraulic energy (pressure retarded osmosis). FO typically requires zero or low hydraulic driving pressure, therefore the fouling potential of the FO membranes is much lower than conventional pressure-driven membrane processes. However, concentration polarization (CP), especially the internal CP significantly reduces the effective osmotic pressure across the FO membrane, the major driving force for the filtration process. As a result, innovative FO membrane materials like electrospun nanofibers have been explored to make low tortuosity, high porosity, and thin FO membranes with a high rejection rate of solutes and low or zero diffusion of the draw solute. The orientation of the FO membrane with active layer-facing-feed solution has less fouling than active layer-facing-draw solution. In addition, to further decrease the fouling potential, a hydrophilic and more negatively charged membrane is preferred when filtration of natural organic matter (NOM) or alginate in the absence of multivalent cations.  相似文献   

5.
《中国化学快报》2022,33(8):3818-3822
In this work, a conductive thin film composite forward osmosis (TFC-FO) membrane was firstly prepared via vacuum filtering MXenes nanolayer on the outer surface of polyethersulfone membrane followed by interfacial polymerization in the other side. Moreover, its feasibility of mitigating organic fouling under electric field was evaluated. Results indicated that the addition of MXenes greatly reduced the electric resistance of membrane from 2.1 × 1012 Ω to 46.8 Ω, enhanced the membrane porosity and promoted the membrane performance in terms of the ratio of water flux to reverse salt flux. The modified TFC-FO membrane presented the optimal performance with 0.47 g/m2 loading amount of MXenes. Organic fouling experiments using sodium alginate (SA) and bovine serum albumin (BSA) as representative demonstrated that the introduction of MXenes could effectively enhance the anti-fouling ability of TFC-FO membrane under the electric field of 2 V. The interelectron repulsion hindered organic foulants attaching into membrane surface and thus effectively alleviated the membrane fouling. More importantly, the modified TFC-FO membrane showed good stability during the fouling experiment of 10 h. In all, our work proved that introducing MXenes into the porous layer of support is feasible to alleviate organic fouling of FO membrane.  相似文献   

6.
For the first time, the potential of polybenzimidazole (PBI) nanofiltration membrane as a forward osmosis membrane has been investigated. PBI was chosen mainly because of its unique nanofiltration characteristics, robust mechanical strength and excellent chemical stability. The MgCl2 solutions with different concentrations and other different salt solutions were employed as draw solutions to test the water permeation flux through the PBI membrane during forward osmosis. High water permeation flux and excellent salt selectivity were achieved by using the PBI nanofiltration membrane which has a narrow pore size distribution. Effects of membrane morphology, operation conditions and flowing patterns of two feed streams within the membrane module on water transport performance have been investigated. It may conclude that PBI nanofiltration membrane is a promising candidate as a forward osmosis (FO) membrane.  相似文献   

7.
A laboratory wastewater treatment membrane bioreactor (MBR) with a submerged hollow-fibre membrane was used to investigate the major foulants in sludge mixtures. Confocal laser scanning microscopy (CLSM) with a triple fluorescent staining protocol, i.e., SYTO9 for microbial cells, ConA-TRITC lectin for polysaccharides and NanoOrange for proteins, was utilised to visualise the fouling materials. A pool of biopolymer clusters (BPCs) ranging from 2.5 to 60 μm in size was identified in the liquid phase of the MBR sludge and in the cake sludge on the membrane surface. According to the CLSM examination, BPC are free and independent organic solutes that are different from biomass flocs and extracellular polymeric substances (EPS) and much larger than soluble microbial products (SMP). Compared to EPS, BPC contain more polysaccharides and proteins and less humic substances. It is believed that BPC are an important foulant that interacts with biomass flocs to form the sludge fouling layer on the membrane. A filtration test observed with the CLSM shows that BPC are apparently formed by the adsorption and affinity clustering of SMP within the sludge deposited on the membrane surface. The cake sludge on the fouled membrane has a much higher BPC content (16.8 mg TOC/g SS) than the MBR bulk sludge (0.4 mg TOC/g SS). It is argued that BPC behave as a glue to facilitate the growth of an impermeable sludge cake on the membrane surface, thus resulting in serious MBR fouling. These CLSM findings provide the first direct evidence of the presence of BPC in MBR and illustrate their essential role in membrane fouling.  相似文献   

8.
《中国化学快报》2021,32(9):2882-2886
Zero-dimensional carbon dots have emerged as important nanofillers for the separation membrane due to their small specific size and rich surface functional groups. This study proposed a strategy based on hydrophobic carbon dots (HCDs) to regulate water channels for an efficient forward osmosis (FO) membrane. Thin-film composite (TFC) membranes with superior FO performance are fabricated by introducing HCDs as the nanofiller in the polyacrylonitrile support layer. The introduction of HCDs promotes the formation of the support layer with coherent finger-like hierarchical channels and micro-convex structure and an integrated polyamide active layer. Compared to the original membrane, TFC-FO membrane with 10 wt% HCDs exhibits high water flux (15.47 L m−2 h−1) and low reverse salt flux (2.9 g m−2 h−1) using 1 mol/L NaCl as the draw solution. This improved FO performance is attributed to the lower structural parameters of HCDs-induced water channels and alleviated internal concentration polarization. Thus, this paper provides a feasible strategy to design the membrane structure and boost FO performance.  相似文献   

9.
Periodic reverse flow through membranes is an effective technique to remove foulants from microfiltration (MF) membrane surfaces. This work explored direct visual observation (DVO) of yeast deposition and subsequent removal via backwashing and single backpulses using microvideo photography with cellulose-acetate (CA) and Anopore anodised-alumina (AN) MF membranes. Foulant deposited less uniformly on the surfaces of the CA membranes than on the AN membrane surfaces during forward filtration. Foulant cake layers of approximately 30 μm thickness formed on both membranes after forward filtration for 1–2 h, leading to fouled-membrane fluxes of only 15–25% of the clean-membrane fluxes.Foulant was removed by reverse flow from the CA membrane surfaces in clumps. The time constant for foulant removal was determined from photomicrographs to be approximately 0.2 s, and 95% of the membrane surface was cleaned within 1 s of backpulsing, resulting in 95% recovery of the initial flux. The foulant cake was also removed from the AN membranes in clumps, though much of the membrane remained covered in a monolayer of yeast. The flux through the membrane covered with a full monolayer was determined during forward filtration to be about 70% of the clean membrane flux.A model for flux recovery is proposed which takes into account the fraction of the membrane surface which is completely cleaned as well as the fraction which remains covered in a foulant monolayer. The predicted and experimentally-determined recovered fluxes as a function of backpulse duration are in very good agreement.  相似文献   

10.
Fouling of reverse osmosis (RO) and nanofiltration (NF) membranes by humic acid, a recalcitrant natural organic matter (NOM), was systematically investigated. The membrane flux performance depended on both hydrodynamic conditions (flux and cross-flow velocity) and solution composition (humic acid concentration, pH, ionic strength, and calcium concentration), and was largely independent of virgin membrane properties. While increasing humic acid concentration and ionic strength, and lowering cross-flow velocity affected flux performance moderately, severe flux reduction occurred at high initial flux, low pH, and high calcium concentration. At a calcium concentration of 1 mM, all the membranes exhibited an identical stable flux, independent of their respective intrinsic membrane permeabilities. The effect of solution composition was more significant at higher fluxes. Improved salt rejection was observed as a result of humic acid fouling, which was likely due to Donnan exclusion by humic material close to membrane surfaces. Greater rejection improvement was observed for membranes with rougher surfaces.  相似文献   

11.
Reverse osmosis (RO) is being increasingly used in treatment of domestic wastewater secondary effluent for potable and non-potable reuse. Among other solutes, dissolved biopolymers, i.e., proteins and polysaccharides, can lead to severe fouling of RO membranes. In this study, the roles of RO membrane surface properties in membrane fouling by two model biopolymers, bovine serum albumin (BSA) and sodium alginate, were investigated. Three commercial RO membranes with different surface properties were tested in a laboratory-scale cross-flow RO system. Membrane surface properties considered include surface roughness, zeta potential, and hydrophobicity. Experimental results revealed that membrane surface roughness had the greatest effect on fouling by the biopolymers tested. Accordingly, modified membranes with smoother surfaces showed significantly lower fouling rates. When Ca2+ was present, alginate fouled RO membranes much faster than BSA. Considerable synergistic effect was observed when both BSA and alginate were present. The larger foulant particle sizes measured in the co-existence of BSA and alginate indicate formation of BSA-alginate aggregates, which resulted in greater fouling rates. Faster initial flux decline was observed at higher initial permeate flux even when the flux was measured against accumulative permeate volume, indicating a negative impact of higher operating pressure.  相似文献   

12.
Pressure retarded osmosis (PRO) was investigated as a viable source of renewable energy. In PRO, water from a low salinity feed solution permeates through a membrane into a pressurized, high salinity draw solution; power is obtained by depressurizing the permeate through a hydroturbine. A PRO model was developed to predict water flux and power density under specific experimental conditions. The model relies on experimental determination of the membrane water permeability coefficient (A), the membrane salt permeability coefficient (B), and the solute resistivity (K). A and B were determined under reverse osmosis conditions, while K was determined under forward osmosis (FO) conditions. The model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to the lack of suitable membranes and membrane modules. In this investigation, the use of a custom-made laboratory-scale membrane module enabled the collection of experimental PRO data. Results obtained with a flat-sheet cellulose triacetate (CTA) FO membrane and NaCl feed and draw solutions closely matched model predictions. Maximum power densities of 2.7 and 5.1 W/m2 were observed for 35 and 60 g/L NaCl draw solutions, respectively, at 970 kPa of hydraulic pressure. Power density was substantially reduced due to internal concentration polarization in the asymmetric CTA membranes and, to a lesser degree, to salt passage. External concentration polarization was found to exhibit a relatively small effect on reducing the osmotic pressure driving force. Using the predictive PRO model, optimal membrane characteristics and module configuration can be determined in order to design a system specifically tailored for PRO processes.  相似文献   

13.
Atomic force microscopy in conjunction with the colloid (silica) probe technique has been used to quantify the variations in electrical double-layer interactions and adhesion at different locations on a rough reverse osmosis membrane (AFC99) surface in NaCl solutions. Prior scanning of the membrane surface with the colloid probe allowed precise location for force measurements. The membrane surface was composed entirely of peaks and valleys with a surface roughness substantially greater than that of most other types of polymeric membranes. The magnitude of the electrical double-layer repulsion between the colloid probe and the membrane at peaks on the membrane surface was greatly reduced compared to that in the valleys. Nevertheless, adhesion of the colloid probe was lower at the peaks on the membrane surface than in the valleys with the difference increasing with decreasing salt concentration, and reaching a factor of more than 20 in 10(-3) M solution. The study shows that minimization of membrane fouling by colloids could be achieved by choosing membranes with a roughness periodicity preventing penetration of foulants into valleys on the surface. Copyright 2000 Academic Press.  相似文献   

14.
Soluble microbial products (SMPs) contained in membrane bioreactor (MBR) supernatant have been proved to be main foulants. To obtain a comprehensive understanding of the fouling potential of SMPs on the basis of both hydrophilic/hydrophobic properties and molecular size, MBR supernatant of a pilot-scaled system treating municipal wastewater was partitioned into different hydrophilic/hydrophobic fractions by DAX-8 resins, with joint size partition of hydrophilic fraction also undertaken. A series of stirred dead-end filtration tests were conducted to investigate the flux decline. Hydrophilic fraction was found the dominant foulant responsible for flux deterioration, which was mainly attributed to the subclass of molecular weight above 100 kDa. The molecular weight distribution and atomic force microscopy images indicated that large molecules in hydrophilic fraction plugged the membrane pores. The backwash tests showed the flux decline caused by hydrophilic fraction was much less recoverable by hydraulic cleaning. It can be inferred that steric factor, i.e. size exclusion was the primary cause in the initial stage of fouling, while the role of hydrophobic interaction was of less significance. Additional modeling work indicates that the main fouling mechanism was complete blocking, further confirming the predominance of size exclusion contributing to membrane fouling by SMPs in MBR supernatant.  相似文献   

15.
A rapid characterization method was used to study protein fouling of cellulose acetate membrane during dead-end, in-line, constant flux microfiltration. Based on pressure-permeate volume profiles, two fouling phases could be identified and compared at different permeate fluxes. Using protein staining dyes, the model foulant (bovine serum albumin) was found to deposit on the upstream side of the membrane as a loose cake at its isoelectric point. The effects of solution pH on both the nature and extent of membrane fouling, and membrane cleaning were examined. To further understand and quantitatively analyze the fouling behavior, a combined mathematical model which took into account pore blocking, cake formation and pore constriction was developed based on existing fouling models. The data obtained by modeling was in good agreement with experimental fouling data. Theoretical analysis of data clearly indicated that cake formation was the main fouling mechanism. Using methods such as dynamic light scattering, the significant role of large protein aggregates in membrane fouling was confirmed. The dimer composition of protein did not change significantly during the fouling experiments, clearly indicating that smaller aggregates played less important role in membrane fouling.  相似文献   

16.
Dissolved organic matter (DOM) as a potent foulant in membrane bioreactor (MBR) systems has attracted great attention in recent years. This paper attempts to elucidate the effect of solution chemistry (i.e. solution pH, ionic strength, and calcium concentration) on the fouling potential of DOM with different characteristics. Results of microfiltration experiments showed that the fouling potential of DOM having higher hydrophobic content increased more markedly at low pH due to the reduced ionization of carboxylic and phenolic functional groups of aquatic humic substances. In contrast, the fouling potential of hydrophilic DOM components and the molecular size of DOM appeared to be less affected by solution pH. The more compact molecular configuration of DOM at high ionic strength contributed to form a denser fouling layer, and limited the amount of foulants retained by the membranes on the other hand. DOM fouling potential greatly increased with increasing calcium concentration. The magnitude of the increase, however, was independent of the hydrophobicity of DOM, suggesting strong interactions exist between calcium ions and hydrophilic DOM components. Moreover, it was observed that the main mechanism governing the effect of calcium ions on the molecular size of DOM transited from charge shielding to complex formation as calcium concentration increased.  相似文献   

17.
Membrane foulants and gel layer formed on membrane surfaces were systematically characterized in a submerged membrane bioreactor (MBR) under sub-critical flux operation. The evaluation of mean oxidation state (MOS) of organic carbons and Fourier transform infrared (FT-IR) spectroscopy demonstrated that membrane foulants in gel layer were comprised of not only extracellular polymeric substances (EPS) (proteins, polysaccharides, etc.) but also other kinds of organic substances. It was also found that fine particles in mixed liquor had a strong deposit tendency on the membrane surfaces, and membrane foulants had much smaller size than mixed liquor in the MBR by particle size distribution (PSD) analysis. Gel filtration chromatography (GFC) analysis showed that membrane foulants and soluble microbial products (SMP) had much broader distributions of molecular weight (MW) and a larger weight-average molecular weight (Mw) compared with the influent wastewater and the membrane effluent. Scanning electron microscopy (SEM) and energy-diffusive X-ray (EDX) analysis indicated that membrane surfaces were covered with compact gel layer which was formed by organic substances and inorganic elements such as Mg, Al, Fe, Ca, Si, etc. The organic foulants coupled the inorganic precipitation enhanced the formation of gel layer and thus caused membrane fouling in the MBR.  相似文献   

18.
通过相转变法制备了一系列三醋酸纤维素/醋酸纤维素正渗透膜,并探索了影响正渗透膜水通量的三个重要因素:膜厚度、凝胶时间、热处理过程。结果表明膜厚度为300mm、凝胶时间48 h,并经过热处理以后的正渗透膜水通量效果最佳,达到7.088 L/m~2·h。  相似文献   

19.
基于海水淡化的正渗透膜分离技术的发展   总被引:3,自引:0,他引:3  
近年来,水资源危机日益加重。在海水淡化技术中,与反渗透分离技术相比,正渗透分离技术作为一种低能耗、绿色的解决方案,具有明显优势,在国际上得到了广泛的重视,是膜分离技术的研究热点之一。本文从正渗透膜材料结构与性能关系的角度,对膜材料的最新进展进行了综述,同时分析了汲取液的常见类型,并简述了正渗透分离技术的新应用,展望了其未来的发展前景。  相似文献   

20.
A three mechanism model to describe fouling of microfiltration membranes   总被引:3,自引:0,他引:3  
Mathematical modeling of flux decline during filtration plays an important role in both sizing membrane systems and in the understanding of membrane fouling. Protein fouling is traditionally modeled using one of three classical fouling mechanisms: pore blockage, pore constriction or cake filtration. Here, we have developed a mathematical model to describe flux decline behavior during microfiltration accounting for all three classical fouling mechanisms. Pore constriction was assumed to first reduce the size of internal pores. Pore blockage then occurs at the top of the membrane, preventing further fouling to the interior structure. Finally the foulants at the top of the membrane form a cake, which controls the late stages of the filtration. The model prediction shows excellent agreement with experimental data for 0.25 μm polystyrene microspheres filtered through 0.22 μm Isopore membranes (where pore constriction is expected to be minimal) as well as non-aggregated bovine serum albumin solution through hydrophobic Durapore membranes (where pore constriction is expected to dominate). The effects of different fouling mechanisms on the flux decline were characterized by the ratio of characteristic fouling times of the different mechanisms. In this way the model can provide additional insights into the relative importance of different fouling mechanisms as compared to an analysis by a single mechanism model or by derivative plots, and it can be used to provide important insights into the flux decline characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号