首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adsorption of a basic dye, methylene blue, from aqueous solutions onto as-received activated carbons and acid-treated carbons was investigated. The physical and surface chemical properties of the activated carbons were characterized using BET-N(2) adsorption, X-ray photoelectron spectroscopy (XPS), and mass titration. It was found that acid treatment had little effect on carbon textural characteristics but significantly changed the surface chemical properties, resulting in an adverse effect on dye adsorption. The physical properties of activated carbon, such as surface area and pore volume, have little effect on dye adsorption, while the pore size distribution and the surface chemical characteristics play important roles in dye adsorption. The pH value of the solution also influences the adsorption capacity significantly. For methylene blue, a higher pH of solution favors the adsorption capacity. The kinetic adsorption of methylene blue on all carbons follows a pseudo-second-order equation.  相似文献   

2.
Several series of activated carbons prepared by catalytic and noncatalytic gasification and subsequent deposition of pyrocarbon by pyrolysis of methylene chloride or n-amyl alcohol were studied by FTIR, chromatography, and adsorption methods using nitrogen and probe organics (explosives). The relationships between the textural characteristics of carbon samples and the recovery rates (eta) of explosives on solid-phase extraction (SPE) using different solvents for their elution after adsorption were analyzed using experimental and quantum chemical calculation results. The eta values for nitrate esters, cyclic nitroamines, and nitroaromatics only partially correlate with different adsorbent parameters (characterizing microporosity, mesoporosity, pore size distributions, etc.), polarity of eluting solvents, or characteristics of probe molecules, since there are many factors strongly affecting the recovery rates. Some of the synthesized carbons provide higher eta values than those for such commercial adsorbents as Hypercarb and Envicarb.  相似文献   

3.
Oil-palm shells, a biomass by-product from palm-oil mills, were converted into activated carbons by vacuum or nitrogen pyrolysis, followed by steam activation. The effects of pyrolysis environment, temperature and hold time on the physical characteristics of the activated carbons were studied. The optimum pyrolysis conditions for preparing activated carbons for obtaining high pore surface area are vacuum pyrolysis at a pyrolysis temperature of 675 °C and 2 h hold time. The activation conditions were fixed at a temperature of 900 °C and 1 h hold time. The activated carbons thus obtained possessed well-developed porosities, predominantly microporosities. For the pyrolysis atmosphere, it was found that significant improvement in the surface characteristics of the activated carbons was obtained for those pyrolysed under vacuum. Adsorption capacities of activated carbons were determined using phenol solution. For the activated carbons pyrolysed under optimum vacuum conditions, a maximum phenol adsorption capacity of 166 mg/g of carbon was obtained. A linear relationship between the BET surface area and the adsorptive capacity was shown.  相似文献   

4.
A series of activated carbons with varied surface chemistry, obtained by wet oxidation and thermal treatment, was used for the removal of penicillin from low concentration aqueous solution. It was found that the carbon surface chemistry favors the degradation of the antibiotic, giving rise to various intermediates detected both in solution and in the adsorbed phase (deposited with the pore structure of the activated carbons). The confinement of penicillin molecules entrapped in the nanopores of activated carbons of acidic nature accelerates their degradation compared to that one in the bulk solution, which can be linked the strong local pH fall inside the pores. Degradation also takes place in activated carbons of basic pH, although the nature and partition of the intermediates formed differ from those in the acidic carbons. In both cases most of the breakdown products do not present therapeutic activity.  相似文献   

5.
This study was conducted to understand and optimize the activation process for the production of a low-cost activated carbon (AC) using a renewable and plentiful biomass waste, pinecones. This was achieved by tracking the changes in porous structure, surface chemistry and adsorption properties of the AC produced using different activating agents, activation temperatures, holding times and heating rates. Generally, produced ACs were predominantly microporous with small external surface area and were different in terms of H/C and O/C ratios. Study of Pb2+ cations adsorption on these samples proved the high affinity of the pinecones derived ACs to this cation. The best adsorption behaviour was recognized in sample prepared by impregnation with H3PO4 at weight ratio of 2, then heating at 400?°C for 2?h at 5?°C/min heating rate. This sample possessed the highest BET surface area (1335 m2/g). The adsorption process obeyed the pseudo-first-order and Freundlich model slightly better than the pseudo-second-order kinetics and Langmuir model. The high Langmuir maximum adsorption capacity of 418?mg/g supports the applicability of the produced AC for the removal of Pb2+ cations from wastewater.  相似文献   

6.
Energetics of methane adsorption on microporous activated carbons   总被引:1,自引:0,他引:1  
The influence of microporous carbon surface oxidation on energetics of methane adsorption at 308 K is discussed. Obtained adsorption heats and integral molar entropies of the adsorbate show that microporous carbon surface oxidation changes the methane adsorption process. This is probably resulted by the existence of an endothermic effect during adsorption in oxidized carbon micropores.  相似文献   

7.
Structural characteristics of a series of MAST carbons were studied using scanning electron microscopy images and the nitrogen adsorption isotherms analyzed with several models of pores and different adsorption equations. A developed model of pores as a mixture of gaps between spherical nanoparticles and slitlike pores was found appropriate for MAST carbons. Adsorption of ibuprofen [2-(4-isobutylphenyl)propionic acid] on activated carbons possessing different pore size distributions in protein-free and bovine serum albumin (BSA)-containing aqueous solutions reveals the importance of the contribution of mesopores to the total porosity of adsorbents. The influence of the mesoporosity increases when considering the removal of the drug from the protein-containing solution. Cellulose-coated microporous carbon Norit RBX adsorbs significantly smaller amounts of ibuprofen than uncoated micro/mesoporous MAST carbons whose adsorption capability increases with increasing mesoporosity and specific surface area, burnoff dependent variable. A similar effect of broad pores is observed on adsorption of fibrinogen on the same carbons. Analysis of the ibuprofen adsorption data using Langmuir and D'Arcy-Watt equations as the kernel of the Fredholm integral equation shows that the nonuniformity of ibuprofen adsorption complexes diminishes with the presence of BSA. This effect may be explained by a partial adsorption of ibuprofen onto protein molecules immobilized on carbon particles and blocking of a portion of narrow pores.  相似文献   

8.
A method for obtaining carbonaceous adsorbents from pine cones by chemical activation with NaOH is described. Activated carbons were obtained by two methods of activation (physical mixing and impregnation) and two variants of thermal treatment. It has been shown that pine cones can be successfully used as cheap precursor of carbonaceous adsorbents of well-developed surface area, large pore volume and good sorption properties. All activated carbon samples obtained show strongly microporous structure and surface of acidic character. The best physicochemical properties and greatest sorption capacity towards iodine were found for the carbon samples obtained by physical mixing of the precursor with the activating agent and then subjected to thermal activation at 600°C.  相似文献   

9.
The paper presents results of a study on obtaining activated carbon from common corn cobs and on its use as adsorbent for removal of pollution from liquid and gas phases. The crushed precursor was subjected to pyrolysis at 500 and 800?°C in argon atmosphere and next to physical or chemical activation by CO2 and KOH respectively. The effect of pyrolysis conditions and activation method on the physicochemical properties of the materials obtained was tested. The sorption properties of the carbonaceous adsorbents obtained were characterized by determination of nitrogen dioxide and hydrogen sulphide sorption from gas stream in dry and wet conditions as well as by iodine and methylene blue removal from aqueous solution. The final products were microporous activated carbons of well-developed surface area varying from 337 to 1213 m2/g and showing diverse acid-base character of the surface. The results obtained in our study have proved that a suitable choice of the activation procedure for corn cobs permits production of cheap adsorbents with high sorption capacity toward toxic gases of acidic character as well as different pollutants from liquid phase.  相似文献   

10.
Activated carbons were prepared from old newspaper and paper prepared from simulated paper sludge by chemical activation using various alkali carbonates and hydroxides as activating reagents and also by physical activation using steam. In the chemical activation, the influence of oxidation, carbonization, and activation on the porous properties of the resulting activated carbons was investigated. The specific surface areas (S(BET)) of the activated carbons prepared by single-step activation (direct activation without oxidation and carbonization) were higher than those resulting from two-step activation (oxidation-activation and carbonization-activation) and three-step activation (oxidation-carbonization-activation) methods. The S(BET) values were strongly dependent on the activating reagents and the activating conditions, being >1000 m(2)/g using K(2)CO(3), Rb(2)CO(3), Cs(2)CO(3), and KOH as activating reagents but <1000 m(2)/g using Li(2)CO(3), Na(2)CO(3), and NaOH. These differences in S(BET) values are suggested to be related to the ionic radii of the alkalis used as activating reagents. The microstructures of the higher S(BET) samples show a complete loss of fiber shape but those of the lower S(BET) samples maintain the shape. In the physical activation, the porous properties of the activated carbons prepared by the single-step method were examined as a function of the production conditions such as activation temperature, activation time, steam concentration, and flow rate of the carrier gas. The maximum S(BET) and total pore volume (V(P)) were 1086 m(2)/g and 1.01 ml/g, obtained by activation at 850 degrees C for 2 h, flowing 20 mol% of steam in nitrogen gas at 0.5 l/min. A correlation was found between S(BET) and the yield of the product, the maximum S(BET) value corresponding to a product yield of about 10%. This result is suggested to result from competition between pore formation and surface erosion. Compared with chemically activated carbons using K(2)CO(3), the porous properties of the physically activated carbons have lower S(BET) and V(P) values because of the smaller size and lower volume of their micropores. On the other hand, they retain the original fiber shape and the paper sheet morphology after activation.  相似文献   

11.
A modified form of the Freundlich equation in which the solute equilibrium concentration is normalized with respect to the solute solubility is analyzed and applied to adsorption isotherms of phenol, 4-nitrophenol, 4-chlorophenol, and 2-chlorophenol at different values of pH on commercial activated carbon before and after oxidation. The analysis confirms the importance of normalizing the solute equilibrium concentration when analyzing the adsorption isotherms, and it is suggested that a parameter, K(F10), obtained by taking 10% solubility as the reference point when applying the Freundlich equation, is probably the best comparative estimate of the relative adsorption capacity of the carbon for different phenolic compounds. In combination with the Freundlich exponent, n(F), estimates of the adsorption capacity at any other reference point can then be obtained. Analysis of the experimental results also indicates a need to distinguish between two regimes of adsorption, characterized by an adsorption energy, E(ads), greater than or less than a critical value, E(ca). When E(ads) > E(ca), the shape of the adsorption isotherm is determined by solute-solid interactions. On the other hand, when E(ads) < E(ca), solute-solution interactions become more important.  相似文献   

12.
This study presents an experimental and theoretical analysis of the effect of surface heterogeneity on the capacity of 20 commercial activated carbons to adsorb hydrogen at 77 and 258 K and for maximum pressures of 20 bar. Some of the samples have been subjected to surface modification by impregnation or by surface oxidation prior to the hydrogen adsorption measurements. All the activated carbons have been analyzed by N2 adsorption at 77 K using the thermodynamic isotherm presented in a previous study. The hydrogen adsorption capacity of the activated carbons has been well correlated to the micropore volume and the characteristic m2 parameter of the thermodynamic isotherm accounting for the energy heterogeneity of the material. On the basis of the model presented here, we discuss how surface heterogeneity, in addition to the adsorption strength, might affect the ability of activated carbons and related materials to adsorb hydrogen.  相似文献   

13.
The substantiation and the area of applicability of the Dubinin—Radushkevich equation for determination of the micropore volume in microporous systems from experimental data on adsorption isotherms were examined. It was shown that the micropore volumes found using the standard procedure are overestimated. A more accurate method for determining the mircopore volumes based on the pressure of filling of micropores was proposed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 659–664, April, 1998.  相似文献   

14.
The effects of high-voltage pulse electric discharges (HPED) on sorption of boron and sulfate ions on activated carbons of different kinds (KM-2, BAU, DAK) were investigated. The effect of HPED activation on the sorption characteristics of the systems was found to be similar to the temperature effect.  相似文献   

15.
The hydrophobic-hydrophilic character of a series of microporous activated carbons was explored as a key factor in competitive adsorption of a non-polar compound from liquid phase. The selectivity of the carbon surface towards naphthalene was explored by performing the adsorption isotherms in water, cyclohexane and heptane. Solvent polarity and adsorbent hydrophobic character were found to strongly influence the adsorption capacity of naphthalene. In aqueous media, despite the non-polar character of the adsorbate, surface acidity lowered adsorption capacity. This is attributed to the competition of water from the adsorption sites, via H-bonding with surface functionalities and the formation of hydration clusters that reduce the accessibility and affinity of naphthalene to the inner pore structure. In organic media the uptake decreased due to competition of the hydrophobic solvent for the active sites of the carbon and to solvation effects. This competitive effect of the solvent is minimized in oxidized carbons as opposed to the trend obtained in aqueous solutions. The results confirmed that although adsorption of naphthalene strongly depends on the narrow microporosity of the adsorbent, competitive adsorption of the solvent for the active sites becomes important.  相似文献   

16.
The effects of the humic acid (HA) nature and the activated carbon (AC) surface chemistry on the effectiveness of HA removal were investigated. Brown (BHA) and gray (GHA) humic acid fractions of different structure and physicochemical properties were tested in the adsorption process using mesoporous ACs. The modification of chemical structure and surface properties of AC was achieved by ammonization (AC/N) and hydrogen treatment (AC/H). Both approaches led to a decrease in the oxygen content followed by an increase in the carbon basicity, maintaining the porous texture of AC nearly unaltered. Over twice higher removal degree of BHA and GHA was observed for the modified ACs. The kinetics of adsorption of HA fractions have been discussed using the pseudo-second-order model and the intraparticle diffusion model. All ACs showed a higher adsorption capacity toward BHA compared to GHA, which is mainly attributed to the lower molecular weight of BHA. The shape of the equilibrium isotherms indicates a strong competition between water and HA molecules for adsorption sites of the carbon surface.  相似文献   

17.
The objective of this work was to study the adsorption of different oxygenated hydrocarbons (methanol, ethanol, 1 and 2-butanol, methyl acetate) on activated carbons from organic mixtures with cyclohexane. Three activated carbons prepared by thermal and chemical treatments of a commercial carbon were employed for this purpose. Their textural properties were found to be similar, whereas their surface chemistries were modified, as shown by temperature-programmed desorption coupled to mass spectrometry (TPD-MS) and X-ray photoelectron spectroscopy (XPS). The adsorption isotherms were obtained by depletion method, and the analysis of adsorbed species was evaluated by TPD-MS to obtain new insight into the interactions between the different hydrocarbons and the carbon surface. Ethanol leads to a high-energy interaction between its hydroxyl function and the oxygenated surface groups and also to a lower energy interaction between the aliphatic part of the molecule and the carbon material. The desorption activation energy for this hydrophilic interaction is high (50 to 105 kJ/mol), and it is related to the nature of the carbon surface groups. The relative importance of these two interactions depend on the size of the alcohol/methanol is similar to ethanol, whereas butanols lead to more dispersive interactions. Methyl-acetate cannot undergo this kind of strong interaction and behaves like cyclohexane, having desorption activation energies ranging between 25 and 45 kJ/mol no matter the molecule and the carbon surface chemistry.  相似文献   

18.
Role of surface chemistry in adsorption of phenol on activated carbons   总被引:6,自引:0,他引:6  
Two samples of activated carbon of wood origin were oxidized using ammonium persulfate. The structural properties and surface chemistry of the samples and their oxidized counterparts were characterized using sorption of nitrogen and Boehm titration, respectively. Phenol adsorption from solution (at trace concentrations) was studied at temperatures close to ambient without maintaining a specific pH of the solution. The results showed, as expected, that the phenol uptake is dependent on both the porosity and surface chemistry of the carbons. Furthermore, phenol adsorption showed a strong dependence on the number of carboxylic groups due to two factors: (1) phenol reacts with carboxylic groups on the carbon surface, forming an ester bond, and (2) carboxylic groups on the carbon surface remove the pi-electron from the activated carbon aromatic ring matrix, causing a decrease in the strength of interactions between the benzene ring of phenol and the carbon's basal planes, which decreases the uptake of phenol.  相似文献   

19.
Mesoporous activated carbons were prepared from coconut shell by the combination of chemical and physical activation methods. Zinc chloride and CO2 were used as chemical and physical agents, respectively. Optimum parameters were obtained from investigating the effect of various factors at different levels on the methane storage of wet activated carbons using the Taguchi experimental design method. Soaking time, carbonization temperature, and carbonization time were found as effective parameters in the methane storage. Finally, after achieving optimum levels for each factors based on the enhancement of methane storage, a confirmation experiment was conducted. Methane uptakes of the activated carbons were measured at temperature of 2?°C up to the pressure of 80 bar and it turned out that the maximum amount of methane storage (241?V/V) had a good agreement with the predicted result from the Taguchi method.  相似文献   

20.
A regularity govering variations of volume and linear size of micropores in carbon adsorbents during their vapor-gas activation was found. A parameter was proposed that characterizes the degree of development of the micropore system in activating carbons and an initial carbonized material. The parameter is defined as the number (or surface area) of micropores in the volume unit of the micropore zones. This parameter allows one to rationalize the choice of carbonized materials for the preparation of activated carbons with specified adsorption properties and to establish the range of activation beyond which the structure of the micropores loses stability. Furthermore, the parameter serves to predict how activation affects micropore structure parameters and adsorption properties of carbons. This in turn indicates the optimal degrees of microporosity of carbons needed to attain required adsorption properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号