首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr4+Nd3+:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy Ep = 0.8 mJ, wavelength λ = 1064 nm, repetition rate frep. = 5 kHz, pulse duration tp = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg.

The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs).  相似文献   


2.
This paper presents results obtained in a study of collinear geometry double pulse femtosecond LIBS analysis of solids in ambient environment. LIBS signal enhancement of 3–10 fold, accompanied by significant improvement of signal reproducibility, in comparison with the single pulse case, has been found in different samples such as brass, iron, silicon, barium sulfate and aluminum when an optimum temporal separation between the two ablating pulses is used. The influence of the delay between pulses in the LIBS signal intensity was investigated and two intervals of interaction were established. A first transient regime from 0 to 50 ps, in which the LIBS signal increases until reaching a maximum, and a second regime that ranges from 50 to 1000 ps (maximum inter-pulse delay investigated) in which the signal enhancement remains constant. Emissions from both ionized and neutral atoms show the same pattern of enhancement with a clear tendency of lines arising from higher energy emissive states to exhibit higher enhancement factors.  相似文献   

3.
Vibrational spectroscopy standoff detection of explosives   总被引:1,自引:0,他引:1  
Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2–30 μg/cm2) for SIRS experiments and as particles (3–85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of ∼180° from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection–absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 μg/cm2 were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source–target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.  相似文献   

4.
In quantitative Laser Induced Breakdown Spectroscopy (LIBS) measurements it is essential to account for the effect of self-absorption on the emission lines intensity. In order to quantify this effect, in this paper we propose a simple method for evaluating the ratio between the actual measured line intensity and the intensity expected in absence of self-absorption and, if necessary, correcting the effect of self-absorption on line intensity. The method, based on a homogeneous plasma model, is applicable when the plasma electron density is known and in particular to lines whose Stark broadening parameter is available.  相似文献   

5.
A quantitative comparison of the performance of four different laser-induced breakdown spectroscopy detection systems is presented. The systems studied are an intensified photodiode array coupled with a Czerny–Turner spectrometer, an intensified CCD coupled with a Czerny–Turner spectrometer, an intensified CCD coupled to an Echelle spectrometer, and a prototype multichannel compact CCD spectrometer system. A simple theory of LIBS detection systems is introduced, and used to define noise-equivalent spectral radiance and noise-equivalent integrated spectral radiance for spectral detectors. A detailed characterization of cathode noise sources in the intensified systems is presented.  相似文献   

6.
We present LIBS experimental results that demonstrate the use of a newly developed, compact, versatile pulsed laser source in material analysis related to art and archaeological applications in view of research aiming at the development of portable LIBS instrumentation. LIBS qualitative analysis measurements were performed on various samples and objects, and the spectra were recorded in gated and non-gated modes. The latter is important because of advantages arising from size and cost reduction when using simple, compact spectrograph-CCD detection systems over the standard ICCD-based configurations.  相似文献   

7.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

8.
Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.  相似文献   

9.
Detecting trace explosive residues at standoff distances in real-time is a difficult problem. One method ideally suited for real-time standoff detection is laser-induced breakdown spectroscopy (LIBS). However, atmospheric oxygen and nitrogen contributes to the LIBS signal from the oxygen- and nitrogen-containing explosive compounds, complicating the discrimination of explosives from other organic materials. While bathing the sample in an inert gas will remove atmospheric oxygen and nitrogen interference, it cannot practically be applied for standoff LIBS. Alternatively, we have investigated the potential of double pulse LIBS to improve the discrimination of explosives by diminishing the contribution of atmospheric oxygen and nitrogen to the LIBS signal. These initial studies compare the close-contact (< 1 m) LIBS spectra of explosives using single pulse LIBS in argon with double pulse LIBS in atmosphere. We have demonstrated improved discrimination of an explosive and an organic interferent using double pulse LIBS to reduce the air entrained in the analytical plasma.  相似文献   

10.
A mobile double-pulse laser-induced breakdown spectroscopy system for industrial environments is presented. Its capabilities as a process analytical technique for the recovery of metals from molten inorganic wastes are investigated. Using low-melting glass doped with different amounts of additives as a model system for recycling slags, the optimum number of shots, laser inter-pulse and acquisition delay times are optimized for solid and liquid (1200 °C) glass. Limits of detection from 7 ppm (Mn) to 194 ppm (Zn) are achieved working at a distance of 75 cm from the sample. To simplify the quantification of molten samples in an industrial furnace, the possibility is examined of using solid standards for analysis of molten material.  相似文献   

11.
This paper investigates the optimization of double-pulse collinear femtosecond laser-induced breakdown spectroscopy (FLIBS) for silicon. Double-pulse FLIBS signal enhancements were observed over an extended range of sample focal plane position compared to single pulse FLIBS. The FLIBS signal intensity was studied as a function of pulse energy, inter-pulse delay (0 ps‑80 ps) and sample position. Correlation between crater volume and signal intensity was measured over a limited range of the sample focal plane position. It was found that double-pulse FLIBS is superior to single pulse for certain focal plane positions.  相似文献   

12.
M.A. Gondal  T. Hussain  M.A. Baig 《Talanta》2007,72(2):642-649
Study of various binding materials like potassium bromide, poly(vinyl alcohol), starch, silver and aluminum has been carried out using laser-induced breakdown spectroscopy (LIBS). The role of matrix effects using these five binders on LIBS signal intensity was investigated for better performance of LIBS technique as a quantitative analytical tool. For comparative study of different binders, the signal intensity of different Mg lines at 518.3, 517.2, 383.8 and 279.5 nm wavelengths were recorded for pellets prepared with known concentrations of Mg in these binders. The influence of laser energy on ablated mass under different binding materials and its correlation with LIBS signal intensity has been explored. Optical scanning microscopy images of the ablated crater were studied to understand the laser ablation process. The study revealed that the binding material plays an important role in the generation of LIBS signal. The relative signal intensity measured for a standard Mg line (at 518.3 nm) were 735, 538, 387, 227 and 130 for potassium bromide, starch, poly(vinyl alcohol), silver and aluminum as binders, respectively. This indicates clearly that potassium bromide is better as a binder for LIBS studies of powder samples.  相似文献   

13.
A significant parameter to monitor the status of concrete buildings like bridges or parking garages is the determination of the depth profile of the chlorine concentration below the exposed concrete surface. This information is required to define the needed volume of restoration for a construction. Conventional methods like wet chemical analysis are time- and cost-intensive so an alternative method is developed using laser-induced breakdown spectroscopy (LIBS). The idea is to deploy LIBS to analyze drill cores by scanning the sample surface with laser pulses. Chlorine spectral lines in the infrared (IR) and ultraviolet (UV)-range were studied for chlorine detection in hydrated cement samples. The excitation energies of these spectral lines are above 9.2 eV. Hence high plasma temperatures and pulse energies in the range of some hundred millijoules are needed to induce sufficient line intensity levels at the required working distance. To further increase the line intensity and to lower the detection limit (LOD) of chlorine a measuring chamber is used where different ambient pressures and gases can be chosen for the measurements. The influences on the line intensity for pressures between 5 mbar and 400 mbar using helium as process gas and the influence of different laser burst modi like single and collinear double pulses are investigated. For the first time a LOD according to DIN 32 645 of 0.1 mass% was achieved for chlorine in hydrated cement using the UV line 134.72 nm.  相似文献   

14.
Laser-induced breakdown spectroscopy (LIBS) is an on-line, real-time technology that can produce immediate information about the elemental contents of tissue samples. We have previously shown that LIBS may be used to distinguish cancerous from non-cancerous tissue. In this work, we study LIBS spectra produced from chicken brain, lung, spleen, liver, kidney and skeletal muscle. Different data processing techniques were used to study if the information contained in these LIBS spectra is able to differentiate between different types of tissue samples and then identify unknown tissues. We have demonstrated a clear distinguishing between each of the known tissue types with only 21 selected analyte lines from each observed LIBS spectrum. We found that in order to produce an analytical model to work well with new sample we need to have representative training data to cover a wide range of spectral variation due to experimental or environmental changes.  相似文献   

15.
As applications for laser-induced breakdown spectroscopy (LIBS) become more varied with a greater number of field and industrial LIBS systems developed and as the technique evolves to be more quantitative that qualitative, there is a more significant need for LIBS systems capable of analysis with the use of a single laser shot. In single-shot LIBS, a single laser pulse is used to form a single plasma for spectral analysis. In typical LIBS measurements, multiple laser pulses are formed and collected and an ensemble-averaged method is applied to the spectra. For some applications there is a need for rapid chemical analysis and/or non-destructive measurements; therefore, LIBS is performed using a single laser shot. This article reviews in brief several applications that demonstrate the applicability and need for single-shot LIBS.  相似文献   

16.
A review of standoff detection technologies for explosives has been made. The review is focused on trace detection methods (methods aiming to detect traces from handling explosives or the vapours surrounding an explosive charge due to the vapour pressure of the explosive) rather than bulk detection methods (methods aiming to detect the bulk explosive charge). The requirements for standoff detection technologies are discussed. The technologies discussed are mostly laser-based trace detection technologies, such as laser-induced-breakdown spectroscopy, Raman spectroscopy, laser-induced-fluorescence spectroscopy and IR spectroscopy but the bulk detection technologies millimetre wave imaging and terahertz spectroscopy are also discussed as a complement to the laser-based methods. The review includes novel techniques, not yet tested in realistic environments, more mature technologies which have been tested outdoors in realistic environments as well as the most mature millimetre wave imaging technique. Figure Standoff detection and identification is one of the most wanted capabilities  相似文献   

17.
Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high.  相似文献   

18.
Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm− 2. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg− 1 B, 3.0 mg kg− 1 Cu, 3.6 mg kg− 1 Fe, 1.8 mg kg− 1 Mn and 1.2 mg kg− 1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.  相似文献   

19.
One of the most recently applied laser-based techniques in combustion environment is the laser-induced breakdown spectroscopy (LIBS). The technique has been extensively and successfully applied to elemental concentration measurements in solids and liquids. The LIBS signal is much weaker in gases and hence more work is required for quantitative measurements in flames. In the present work we used two orthogonal Nd:YAG lasers that operate at the fundamental wavelength with laser pulse energy of about 100 mJ/pulse. A Princeton-Instruments IMAX ICCD camera attached to a PI-Echelle spectrometer was used for signal detection. The lasers are focused using two 5-cm lenses. Several calibration points have been collected in well defined and homogeneous mixtures of air and fuel in order to be used as references for the measurements in turbulent partially premixed flames. This work shows that the application of the LIBS technique in a turbulent combustion environment is feasible and signal is enhanced by applying an orthogonal dual-pulse arrangement for air–fuel.  相似文献   

20.
Laser-induced breakdown spectroscopy (LIBS) has been used to identify the differences or similarities between crude oil and fuel residues. Firstly, a man portable LIBS analyzer was used for the on-site environmental control and analysis of the oil spill from The Prestige. An exhaustive analysis of crude oil and oil spill residues (collected during the field campaign in the Galician Coast) was performed in the laboratory. Characteristics elements in petroleum such as C, H, N, O, Mg, Na, Fe and V were detected. In addition, contributions from Ca, Si and Al in the composition of residues have been found. The use of intensity ratios of line and band emissions in the original fuel (crude oil) and in the aged residues allowed a better characterization of the samples than the simple use of peak intensities. The chemical composition between the crude oil and the fuel residues was found completely different. As well, a statistical method was employed in order to discriminate residues. Although significant differences were observed, no conclusions in terms of age and provenance could be reached due to the unknowledgment in the origin of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号