首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 μg g–1 in solid samples, when 300 mg/20 mL slurry was prepared and a 10 μL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 μg g–1 silicon in aluminium oxide.  相似文献   

2.
A fast and accurate analytical method was established for the simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by graphite furnace atomic absorption spectrometry using a slurry sampling technique and a Hitachi Model Z-9000 atomic absorption spectrometer. The slurry samples were prepared by the ultrasonication of silicon carbide or silicon nitride powders with 0.1 M nitric acid. Calibration curves were prepared by using a mixed standard solution containing aluminum, calcium, iron and 0.1 M nitric acid. The analytical results of the proposed method for aluminum, calcium and iron in silicon carbide and silicon nitride reference materials were in good agreement with the reference values. The detection limits for aluminum, calcium and iron were 0.6 microg/g, 0.15 microg/g and 2.5 microg/g, respectively, in solid samples, when 200 mg of powdered samples were suspended in 20 ml of 0.1 M nitric acid and a 10 microl portion of the slurry sample was then measured. The relative standard deviation of the determination of aluminum, calcium and iron was 5 - 33%.  相似文献   

3.
This paper describes a method for removing oxide film from the surface of silicon wafers using an inert gas fusion impulse furnace and precise determination of bulk oxygen within the wafer. A silicon wafer was cut to about 0.35 g (6 x 13 x 2 mm) and dropped into a graphite crucible. The sample was then heated for 40 s at 1300 degrees C. The wafer's oxide film was reduced by carbon and removed as carbon monoxide. The treated silicon sample was taken out of the graphite crucible and maintained again with the holder of the oxygen analyzer. The graphite crucible was then heated to 2100 degrees C. The treated silicon sample was dropped into the heated graphite crucible and the trace bulk oxygen in the wafer was measured using the inert gas fusion infrared absorption method. The relative standard deviations of the oxygen in silicon wafer samples with the removed surface oxide film were determined to be 0.8% for 9.8 x 10(17) atoms/cm3, and 2.7% for 13.0 x 10(17) atoms/cm3.  相似文献   

4.
Effectiveness of Pd/Mg chemical modifier for the accurate direct determination of zinc in marine/lacustrine sediments by graphite furnace atomic absorption spectrometry (GF-AAS) using slurry samples was evaluated. A calibration curve prepared by aqueous zinc standard solution with addition of Pd/Mg chemical modifier is used to determine the zinc concentration in the sediment. The accuracy of the proposed method was confirmed using Certified Reference Materials, NMIJ CRM 7303-a (lacustrine sediment) from National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Japan, and MESS-3 (marine sediment) and PACS-2 (marine sediment) from National Research Council, Canada. The analytical results obtained by employing Pd/Mg modifier are in good agreement with the certified values of all the reference sediment materials. Although for NRC MESS-3 an accurate determination of zinc is achieved even without the chemical modifier, the use of Pd/Mg chemical modifier is recommended as it leads to establishment of a reliable and accurate direct analytical method. One quantitative analysis takes less than 15 minutes after we obtain dried sediment samples, which is several tens of times faster than conventional analytical methods using acid digested sample solutions. The detection limits are 0.13?µg?g?1 (213.9?nm) and 16?µg?g?1 (307.6?nm), respectively, in sediment samples, when 40?mg of dried powdered samples are suspended in 20?mL of 0.1?mol?L?1 nitric acid and a 10?µl portion of the slurry sample is measured. The precision of the proposed method is 8–15% (RSD).  相似文献   

5.
A procedure was developed for the determination of lead (Pb) and manganese (Mn) using slurry sampling. The two elements were detected using flame atomic absorption spectrometry with a slotted tube atom trap. Slurries were prepared by adding nitric acid solution (0.30%, w/v) to a powdered sample (0.10 g). After homogenization by ultrasonic bath for 15 min, the slurries were introduced directly into the detection equipment. Some conditions of the procedure were evaluated, such as acid concentration, presence of surfactants, and sonication time. Under optimized conditions, the LODs and LOQs achieved were 0.8 and 2.6 microg/g for Pb and 0.5 and 1.6 microg/g for Mn, respectively. The precision obtained varied between 3.1 and 5.8% (Mn), and 2.6 and 5.4% (Pb) for slurries of shrimp and sediment. The analytical curves were established using aqueous standards in nitric acid solutions. The accuracy of the method was assessed through the determination of Pb and Mn in the following certified reference materials: ERM-CE 278 (mussel tissue), CRM 397 (human hair), and SRM 1646a (estuarine sediment). The proposed procedure was successfully applied to the determination of Pb and Mn in six samples of shrimp powder, seasoning, and river sediment. The levels of Mn detected varied from 2.2 to 71.3 microg/g; Pb was detected in only one sediment sample (4.3 microg/g).  相似文献   

6.
Determination of selenium in certified reference biological materials by slurry sampling electrothermal vaporization (ETV)-isotope dilution (ID)-microwave-induced nitrogen plasma mass spectrometry (MIP-MS) was performed. Several parameters such as the heating conditions were studied in order to obtain optimal conditions. A special heating stage called the in situ fusion stage was applied just before the pyrolysis stage in the electrothermal vaporization process in order to fuse the biological sample and to achieve selenium isotope-equilibration between selenium in the sample and the 78Se spike solution. The slurry sample containing an appropriate amount of biological sample, 78Se spike solution, and sodium hydroxide as an alkaline flux was injected into the electrothermal vaporization unit. The slurry sample was in situ fused, pyrolyzed, and then vaporized. The ion counts at m/z=78 and 80, the spike and reference isotopes, respectively, could be measured accurately without interference caused by argon since nitrogen plasma was used. The analytical utility of the proposed slurry sampling-electrothermal vaporization-in situ fusion-microwave-induced nitrogen plasma mass spectrometry was evaluated by determining the selenium concentration in certified reference biological materials, and the analytical results obtained were in good agreement with the certified values. The limit of detection for selenium was 90 ng g−1. The relative standard deviation of the determination of selenium was 8–15% with a high sample throughput (less than 30 min per sample including a slurry preparation.)  相似文献   

7.
A new analytical procedure for the direct determination of metal impurities (Cr, Cu, Fe and V) in aluminium oxide ceramic powders by slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-AES) is reported. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of impurity elements in aluminium oxide ceramic powders from the graphite tube. A vaporization stage with a long ramp time and a short hold time provided the possibility of temporal analyte-matrix separation. The experimental results indicated that a 10 microL 1% m/v slurry of aluminium oxide could be destroyed and vaporized completely with 600 micrograms PTFE under the selected conditions. Two aluminium oxide ceramic powder samples were used without any additional pretreatment. Analytical results obtained by using standard addition method with aqueous standard solution were checked by comparison of the results with pneumatic nebulization (PN)-ICP-AES based on the wet-chemical decomposition and analyte-matrix separation. The limits of detection (LODs) between 0.30 microgram g-1 (Fe) and 0.08 microgram g-1 (Cu) were achieved, and, the repeatability of measurements was mainly better than 10%.  相似文献   

8.
A fast, sensitive, and reliable method for determination of selenium in marine biological tissues by electrothermal atomic absorption spectrometry with slurry sampling was developed. Slurries were prepared from fresh and frozen seafood samples that were previously homogenized, dried, and ground; particle sizes <100 microm were taken for analysis. A 3% (v/v) HNO3 solution containing 0.01% (v/v) Triton X-100 was used as slurry diluent. Slurries were mixed on an automated ultrasonic slurry sampler at 20% amplitude for 30 s just before an aliquot was injected into the furnace. The method was successfully validated against the following certified reference materials: NRCC CRM DORM-2 (Dogfish muscle); NRCC CRM TORT-2 (Lobster hepatopancreas); NRCC CRM DOLT-2 (Dogfish liver); and BCR CRM 278 (Mussel tissue), and was subsequently applied to determination of Se in 10 marine biological samples. The influences of the drying procedure (oven-, microwave-, and freeze-drying), matrix modifier amount, mass of solid material in cup, and pipetting sequence are discussed. The limit of determination of Se was 0.16 microg/g and the repeatability, estimated as between-batch precision, was in the range of 4-8%. Se contents in the samples ranged from 0.6 to 2.8 microg/g. The proposed method should be useful for fast assessment of the daily dietary intake of Se.  相似文献   

9.
X射线荧光光谱法测定氧化铝中杂质元素   总被引:4,自引:0,他引:4  
应用X-射线荧光光谱法测定了氧化铝中11种杂质成分(SiO2,Fe2O3,Na2O,K2O,CaO,TiO2,P2O5,ZnO,V2O5,Ga2O3,Cr2O3)。试样用四硼酸锂和偏硼酸锂作混合熔剂融熔制成玻璃状片形熔块。通过在高纯氧化铝中加入一定量的上述11种元素的纯氧化物配制成中间标准样品,并用此中间标准样品和纯氧化铝作为空白试样组成高、低标,制备了校正曲线。又用此中间标准样品与纯氧化铝按一定比例配制控制样品对分析过程进行质量控制。对所提出方法的精密度进行了考核,结果表明以上11种杂质成分测定结果的RSD值均小于10%。用4种标样对此方法的准确度进行验证,结果表明所得测定值与已知值之间的误差均符合标准规定。  相似文献   

10.
The significance of laboratory sample preparation for the determination of two important mycotoxins, ochratoxin A (OTA) and deoxynivalenol (DON), in wheat was investigated by comparing water-slurry mixing and dry-milling procedures. The distribution of OTA and DON in 10 kg samples of naturally contaminated wheat was established by analyzing one hundred 100 g subsamples of each sample. A normal distribution and a good repeatability of DON measurements was observed for both water-slurry mixing (mean 2290 microg/kg, CV 4.6%, median 2290 microg/kg) and dry milling (mean 2310 microg/kg, CV 6.4%, median 2290 microg/kg) procedures. For OTA determinations, reliable results could be obtained only by slurry mixing sample preparation (mean 2.62 microg/kg, CV 4.0%, median 2.62 microg/kg), whereas dry-milling comminution resulted in an inhomogeneous distribution with a high variability (mean 0.83 microg/kg, CV 75.2%, median 0.60 microg/kg) and a positive skewness (2.12). Ad hoc experiments were performed on different size portions of the same sample (10 kg) to assess accuracy and precision of the comminution/homogenization procedures (slurry mixing and dry milling). Very good results were obtained for DON determination with both procedures in terms of accuracy (>98.7% of the "weighted value") and precision (CV <3%). For OTA determination good results were only obtained by slurry mixing (99.4% of the "weighted value," CV 10%), whereas dry milling provided results with low accuracy (43.2% of the "weighted value") and high variability (CV 110%). This study clearly demonstrated that sample preparation by slurry mixing is strictly necessary to obtain reliable laboratory samples for OTA determination in wheat to minimize misclassification of acceptable/rejectable lots, mainly within official control.  相似文献   

11.
A method for the determination of titanium in graphite furnace atomic absorption spectrometry with slurry sampling was developed. Titanium forms thermally stable carbides in the graphite tube that leads to decreased sensitivity and severe memory effects. Various fluorinating agents, BaF(2), NH(4)F, and CHF(3) (Freon-23) were therefore examined in order to reduce or eliminate these problems. Ti was determined, at various concentration levels, in certified reference materials (CRMs) using ultrasonic slurry sampling graphite furnace atomic absorption spectrometry (USS-GFAAS). The three CRMs, GBW 07601 (Human Hair Powder), GBW 07602 (Bush Branches and Leaves), and GBW 07411 (Chinese Soil), contained 2.7 microg g(-1), 95 microg g(-1), and 0.41% Ti, respectively. For comparison, determinations of Ti were made with modifiers (BaF(2) and NH(4)F) and without modifier, using 5% CHF(3) (in argon) for cleaning the graphite furnace. Good accuracy was obtained using aqueous Ti standards for calibration. A homogeneity study showed that Ti was evenly distributed in all the samples at the mg-microg level. The relative standard deviations (RSDs) obtained for the three CRMs were 16%, 11%, and 8% ( n=30). In spite of the wide range of Ti concentrations in the present samples, the same wavelength (365.4 nm) could be used for analysis by varying the slurry sample concentration. The precision was best for the material with the highest titanium content in spite of the fact that only 3 microg of sample was introduced into the furnace.  相似文献   

12.
An ultrasonic slurry sampling graphite furnace AAS method was developed for the determination of Al, Cu, Li and Mn in spruce seeds, NBS SRM 1575 pine needles and GBW CRM 07602 bush branches and leaves. The only sample preparation was grinding in a Mixer Mill before preparing a slurry by adding 0.14 mol/L nitric acid to a small sample aliquot. Cryogenic grinding was used for the spruce seeds to solve the problem of agglomerating during grinding at room temperature. A modified sample tray was applied allowing the use of both the commercial 1.5 mL vials and home-made 15 mL vials. With optimal conditions for ultrasonic agitation the homogeneity and particle size distributions in the slurries prepared in the two different vials were similar. Several aspects of the slurry sampling approach are discussed and data of important parameters are given, including the total number of particles injected into the graphite furnace, densities of the materials and percentage of analyte extracted into the liquid phase of the slurry. The density of the materials was determined by two methods; by using a Coulter particle analyser and by using a gravimetric method. The two methods gave similar accuracy and precision. The concentration ranges of the elements (in microg g(-1)) were: 80-2100 for Al, 3-15 for Cu, 0.06-2.5 for Li and 50-700 for Mn. External calibration with aqueous standards was employed. Chemical modifiers were not found to be necessary. The relative standard deviations were in the range 1.7-7%. Analyses of the two certified plant reference materials confirmed the accuracy of the method. In addition no significant difference was found for analyses of digested and slurried spruce seeds. The detection limit was 10 ng g(-1) for Li and 170 ng g(-1) for Cu. The characteristic mass (area measurements) was 4.4 pg for Li and 11 pg for Cu. For Al and Mn less sensitive wavelengths were used.  相似文献   

13.
 A method for direct analysis of tea and coffee samples by using electrothermal atomic absorption spectrometry is described. Coffee and tea from different sources were analyzed without digestion step. For slurry analyses the samples were ground, sieved at 105 μm and then suspended in 0.2% v/v HNO3 and 10% v/v Triton X-100 medium. For liquid phase aluminium determination the samples were prepared in the same way and only the liquid is introduced directly into the graphite furnace. Calibration was performed by aqueous standards for both cases and the determinations were carried out in the linear range between 50 and 250 μg L−1. The characteristic mass of aluminium and the detection limit were 45 pg and 2 μg L−1, respectively. Using a typical 0.1% m/v coffee slurry sample, the relative standard deviation of measurements (n=15) for repeatability was about 8.2%. Received December 27, 1998. Revision March 18, 1999.  相似文献   

14.
预富集-氢化物发生原子吸收光谱法测定饮料中的痕量铅   总被引:2,自引:0,他引:2  
原子吸收光谱法测定水样中的痕量元素是应用得最广泛的方法之一[1]。有时需采用多种方法对水样中的痕量元素进行富集。其中一类方法是基于待测元素配合物可以最终定量富集于少量颗粒上,过滤收集这些颗粒,然后制成小体积的、可直接用原子吸收光谱法测定的悬浊液。特定的配位剂分  相似文献   

15.
A RNAA procedure is described for the determination of trace Ir in Precambrian-Cambrian boundary samples. After irradiation, the powdered sample is transferred to a graphite crucible to expel the massive silicon with mixed acid (HF–HCl–HNO3) by heating. The residue is then fused with mixed fusion (Na2O2–NaOH) in a muffle furnace at 700°C for 15 minutes. After cooling, the fused mixture is leached with hot water. The final solution is adjusted to pH 1.5–2.0 and then passed through a column filled with thiourea type chelate resin. The resin absorbed with192Ir is measured for 4000–10 000 s by means of SCORPIO-3000 multi-channel computer — Ge(Li) detector system. Experiments with radioactive tracer are carried aout for checking radiochemical separation yield. The accuracy and precision of the method are evaluated by the analysis of U.S. geological SRMs DTS-1 and AG-Bohor-1. The method is used for the determination of trace Ir in several sets of Precambrian-Cambrian boundary samples collected from Yunnan province in China and the Ir anomaly is observed.  相似文献   

16.
A new approach to sample digestion, subsequent vaporization and introduction to an inductively coupled plasma (ICP) atomic emission spectrometer was developed for the direct determination of magnesium. To each small sample cuvette made of tungsten, a ground rock sample was precisely weighed. The cuvette was situated on a tungsten boat furnace. Ammonium fluoride solution was added to the cuvette as a chemical modifier. After the on-furnace digestion has been completed, the analyte, magnesium, in the cuvette was vaporized and introduced into the ICP atomic emission spectrometer. Since the powdered samples were wet-digested in the sample cuvettes prior to vaporization, they could be analyzed by using a calibration curve prepared from aqueous standard solutions. This method was applied to the determination of magnesium in several standard reference materials with satisfactory results.  相似文献   

17.
A new analytical procedure for the direct determination of metal impurities (Cr, Cu, Fe and V) in aluminium oxide ceramic powders by slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-AES) is reported. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of impurity elements in aluminium oxide ceramic powders from the graphite tube. A vaporization stage with a long ramp time and a short hold time provided the possibility of temporal analyte-matrix separation. The experimental results indicated that a 10 μL 1% m/v slurry of aluminium oxide could be destroyed and vaporized completely with 600 μg PTFE under the selected conditions. Two aluminium oxide ceramic powder samples were used without any additional pretreatment. Analytical results obtained by using standard addition method with aqueous standard solution were checked by comparison of the results with pneumatic nebulization (PN)-ICP-AES based on the wet-chemical decomposition and analyte-matrix separation. The limits of detection (LODs) between 0.30 μg g–1 (Fe ) and 0.08 μg g–1 (Cu) were achieved, and, the repeatability of measurements was mainly better than 10%. Received: 28 August 2000 / Revised: 1 November 2000 / Accepted: 12 November 2000  相似文献   

18.
A new approach to sample digestion, subsequent vaporization and introduction into an inductively coupled plasma atomic emission spectrometer was developed for the direct determination of lead. To each small sample cuvette made of tungsten, a mixture of a ground solid sample and powdered diammonium hydrogenphosphate was precisely weighed. The cuvette was positioned onto the tungsten boat furnace (TBF) incorporating a vaporizer. Tetramethylammonium hydroxide solution was added. Then the cuvette was heated and maintained at a wet-digestion temperature to decompose the solid sample. After digestion, the temperature was elevated to generate the analyte vapor for introduction into a plasma. Since the solid samples were wet-digested in the sample cuvettes before vaporization, they could be analyzed by using a calibration curve prepared from aqueous standard solutions. This method was applied to the determination of lead in several biological materials with satisfactory results.  相似文献   

19.
A new approach to sample digestion, subsequent vaporization and introduction into an inductively coupled plasma atomic emission spectrometer was developed for the direct determination of lead. To each small sample cuvette made of tungsten, a mixture of a ground solid sample and powdered diammonium hydrogenphosphate was precisely weighed. The cuvette was positioned onto the tungsten boat furnace (TBF) incorporating a vaporizer. Tetramethylammonium hydroxide solution was added. Then the cuvette was heated and maintained at a wet-digestion temperature to decompose the solid sample. After digestion, the temperature was elevated to generate the analyte vapor for introduction into a plasma. Since the solid samples were wet-digested in the sample cuvettes before vaporization, they could be analyzed by using a calibration curve prepared from aqueous standard solutions. This method was applied to the determination of lead in several biological materials with satisfactory results.  相似文献   

20.
A new method of silicon determination in molybdenum by the30Si(n, γ)31Si was developed. All the problems occurring during this analysis: standardization, quantitative dissolution, silicon sorption on vessels, reproducibility of β-counting...were carefully studied and new answers were brought to them. The chemical speratation of silicon was performed with a column of anion exchange resin in HCl-HF-H2O2 solution and a column of alumina at pH 9. Accuracy and reproducibility were controlled on standard samples prepared by fusion of inactive molybdenum and radioactive silicon in a plasma furnace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号