首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of Fe[N(SiMe(3))(2)](2) with 1 and 2 equiv of Ph(3)SiSH in hexane afforded dinuclear silanethiolato complexes, [Fe(N(SiMe(3))(2))(mu-SSiPh(3))](2) (1) and [Fe(SSiPh(3))(mu-SSiPh(3))](2) (2), respectively. Various Lewis bases were readily added to 2, generating mononuclear adducts, Fe(SSiPh(3))(2)(L)(2) [L = CH(3)CN (3a), 4-(t)BuC(5)H(4)N (3b), PEt(3) (3c), (LL) = tmeda (3d)]. From the analogous reactions of M[N(SiMe(3))(2)](2) (M = Mn, Co) and [Ni(NPh(2))(2)](2) with Ph(3)SiSH in the presence of TMEDA, the corresponding silanethiolato complexes, M(SSiPh(3))(2)(tmeda) [M = Mn (4), Co (5), Ni (6)], were isolated. Treatment of 3a with (PPh(4))(2)[MoS(4)] or (NEt(4))(2)[FeCl(4)] resulted in formation of a linear trinuclear Fe-Mo-Fe cluster (PPh(4))(2)[MoS(4)(Fe(SSiPh(3))(2))(2)] (7) or a dinuclear complex (NEt(4))(2)[Fe(2)(SSiPh(3))(2)Cl(4)] (8). On the other hand, the reaction of 3a with [Cu(CH(3)CN)(4)](PF(6)) gave a cyclic tetranuclear copper cluster Cu(4)(SSiPh(3))(4) (9), where silanethiolato ligands were transferred from iron to copper. Silicon-sulfur bond cleavage was found to occur when the cobalt complex 5 was treated with (NBu(4))F in THF, and a cobalt-sulfido cluster Co(6)(mu(3)-S)(8)(PPh(3))(6) (10) was isolated upon addition of PPh(3) to the reaction system. The silanethiolato complexes reported here are expected to serve as convenient precursors for sulfido cluster synthesis.  相似文献   

2.
Several iron(III) complexes incorporating diamidoether ligands are described. The reaction between [Li(2)[RN(SiMe(2))](2)O] and FeX(3) (X=Cl or Br; R=2,4,6-Me(3)Ph or 2,6-iPr(2)Ph) form unusual ate complexes, [FeX(2)Li[RN(SiMe(2))](2)O](2) (2, X=Cl, R=2,4,6-Me(3)Ph; 3, X=Br, R=2,4,6-Me(3)Ph; 4, X=Cl, R=2,6-iPr(2)Ph) which are stabilized by Li-pi interactions. These dimeric iron(III)-diamido complexes exhibit magnetic behaviour characteristic of uncoupled high spin (S= 5/2 ) iron(III) centres. They also undergo halide metathesis resulting in reduced iron(II) species. Thus, reaction of 2 with alkyllithium reagents leads to the formation of iron(II) dimer [Fe[Me(3)PhN(SiMe(2))](2)O](2) (6). Similarly, the previously reported iron(III)-diamido complex [FeCl[tBuN(SiMe(2))](2)O](2) (1) reacts with LiPPh(2) to yield the iron(II) dimer [Fe[tBuN(SiMe(2))](2)O](2) but reaction with LiNPh(2) gives the iron(II) product [Fe(2)(NPh(2))(2)[tBuN(SiMe(2))](2)O] (5). Some redox chemistry is also observed as side reactions in the syntheses of 2-4, yielding THF adducts of FeX(2): the one-dimensional chain [FeBr(2)(THF)(2)](n) (7) and the cluster [Fe(4)Cl(8)(THF)(6)]. The X-ray crystal structures of 3, 5 and 7 are described.  相似文献   

3.
Five-coordinated trithiotungsten complexes (PPh(4))[(dmsp)W(S)(3)] (1a) and (PPh(4))[(dpsp)W(S)(3)] (1b) (R(2)PCH(2)CH(2)S(-); R = Me (dmsp-)), Ph (dpsp-))) were synthesized by addition of Hdmsp and Hdpsp to a THF solution of (PPh(4))[(EtS)W(S)(3)]. Treatment of 1a with CuBr in the presence of PPh(3) in CH(3)CN afforded a WCu(2) cluster (dmsp)WS(3)Cu(2)(PPh(3))(2)Br (2). The reaction of 1a with 1 equiv of FeCl(2) went smoothly to generate a 1:1 adduct (PPh(4))[(dmsp)WS(3)(FeCl(2))] (3), while 3 did not react further with excess FeCl(2). On the other hand, 3 was found to react with [Fe(CH(3)CN)(6)](ClO(4))(2), giving rise to an unusual tetranuclear cluster, [(dmsp)WS(3)](2)Fe(2)Cl (4), while the reaction of 1a with 2 equiv of [Fe(CH(3)CN)(6)](ClO(4))(2) led to a cyclic octanuclear cluster [(dmsp)WS(3)Fe](4) (5). Although the oxidation states of W(VI), Cu(I), and Fe(II) are retained in 2 and 3, reduction of the metal ions occurs in the formation of 4 and 5. All the complexes reported in this paper were structurally characterized by X-ray analysis. It is anticipated that the new type of trithiotungsten complexes, 1a and 1b, will serve as potential synthons for various heterometallic sulfide clusters.  相似文献   

4.
A convenient synthesis of (t)Bu(3)SiSH and (t)Bu(3)SiSNa(THF)(x)() led to the exploration of "(t)Bu(3)SiSMX" aggregation. The dimer, [((t)Bu(3)SiS)Fe](2)(mu-SSi(t)Bu(3))(2) (1(2)), was formed from [{(Me(3)Si)(2)N}Fe](2)(mu-N(SiMe(3))(2))(2) and the thiol, and its dissolution in THF generated ((t)Bu(3)SiS)(2)Fe(THF)(2) (1-(THF)(2)). Metathetical procedures with the thiolate yielded aggregate precursors [X(2)Fe](mu-SSi(t)Bu(3))(2)[FeX(THF)]Na(THF)(4) (3-X, X = Cl, Br) and cis-[(THF)IFe](2)(mu-SSi(t)Bu(3))(2) (4). Thermal desolvations of 3-Cl, 3-Br and 4 afforded molecular wheels [Fe(mu-X)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-FeX, X = Cl, Br) and the ellipse [Fe(mu-I)(mu-SSi(t)Bu(3))](14)(C(6)H(6))(n) (6-FeI). Related metathesis and desolvation sequences led to wheels [Co(mu-Cl)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-CoCl) and [Ni(mu-Br)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-NiBr). The nickel wheel disproportionated to give, in part, [((t)Bu(3)SiS)Ni](2)(mu-SSi(t)Bu(3))(2) (7), which was also synthesized via salt metathesis. X-ray structural studies of 1(2) revealed a roughly planar Fe(2)S(4) core, while 1-(THF)(2), 3-Br, and 4 possessed simple distorted tetrahedral and edge-shared tetrahedral structures. X-ray structural studies revealed 5-MX (MX = FeCl, FeBr, CoCl, NiBr) to be wheels based on edge-shared tetrahedra, but while the pseudo-D(6)(d) wheels of 5-FeCl, 5-CoCl, and 5-FeBr pack in a body-centered arrangement, those of pseudo-C(6)(v)() 5-NiBr exhibit hexagonal packing and two distinct trans-annular d(Br...Br). Variable-temperature magnetic susceptibility measurements were conducted on 5-FeCl, 5-CoCl, 5-FeBr, and 6-FeI, and the latter three are best construed as weakly antiferromagnetic, while 5-FeCl exhibited modest ferromagnetic coupling. Features suggesting molecular magnetism are most likely affiliated with phase changes at low temperatures.  相似文献   

5.
The surface chemistry of a series of well-defined metalorganic ferrous and ferric iron complexes on periodic mesoporous silica (PMS) was investigated. In addition to literature known Fe(II)[N(SiMe(3))(2)](2)(THF), Fe(II)[N(SiPh(2)Me(2))(2)](2), and Fe(III)[N(SiMe(3))(2)](2)Cl(THF), the new complexes [Fe(II){N(SiHMe(2))(2)}(2)](2) and Fe(III)[N(SiHMe(2))(2)](3)(μ-Cl)Li(THF)(3) were employed as grafting precursors. Selection criteria for the molecular precursors were the molecular size (monoiron versus diiron species), the oxidation state of the iron center (II versus III), and the functionality of the silylamido ligand (e.g., built-in spectroscopic probes). Hexagonal channel-like MCM-41 and cubic cage-like SBA-1 were chosen as two distinct PMS materials. The highest iron load (12.8 wt %) was obtained for hybrid material [Fe(II){N(SiHMe(2))(2)}(2)](2)@MCM-41 upon stirring the reaction mixture iron silylamide/PMS/n-hexane for 18 h at ambient temperature. Size-selective grafting and concomitantly extensive surface silylation were found to be prominent for cage-like SBA-1. Here, the surface metalation is governed by the type of iron precursor, the pore size, the reaction time, and the solvent. The formation of surface-attached iron-ligand species is discussed on the basis of diffuse reflectance infrared Fourier transform (DRIFT) and electron paramagnetic resonance (EPR) spectroscopy, nitrogen physisorption, and elemental analysis.  相似文献   

6.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

7.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

8.
A new series of Te-Ru-Cu carbonyl complexes was prepared by the reaction of K(2)TeO(3) with [Ru(3)(CO)(12)] in MeOH followed by treatment with PPh(4)X (X=Br, Cl) and [Cu(MeCN)(4)]BF(4) or CuX (X=Br, Cl) in MeCN. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was first treated with PPh(4)X followed by the addition of [Cu(MeCN)(4)]BF(4), doubly CuX-bridged Te(2)Ru(4)-based octahedral clusters [PPh(4)](2)[Te(2)Ru(4)(CO)(10)Cu(2)X(2)] (X=Br, [PPh(4)](2)[1]; X=Cl, [PPh(4)](2)[2]) were obtained. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)X (X=Br, Cl) followed by the addition of CuX (X=Br, Cl), three different types of CuX-bridged Te-Ru carbonyl clusters were obtained. While the addition of PPh(4)Br or PPh(4)Cl followed by CuBr produced the doubly CuBr-bridged cluster 1, the addition of PPh(4)Cl followed by CuCl led to the formation of the Cu(4)Cl(2)-bridged bis-TeRu(5)-based octahedral cluster compound [PPh(4)](2)[{TeRu(5)(CO)(14)}(2)Cu(4)Cl(2)] ([PPh(4)](2)[3]). On the other hand, when the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)Br followed by the addition of CuCl, the Cu(Br)CuCl-bridged Te(2)Ru(4)-based octahedral cluster chain polymer {[PPh(4)](2)(Te(2)Ru(4)(CO)(10)Cu(4)Br(2)Cl(2)).THF}(infinity) ({[PPh(4)](2)[4].THF}(infinity)) was produced. The chain polymer {[PPh(4)](2)[4].THF}(infinity) is the first ternary Te-Ru-Cu cluster and shows semiconducting behavior with a small energy gap of about 0.37 eV. It can be rationalized as resulting from aggregation of doubly CuX-bridged clusters 1 and 2 with two equivalents of CuCl or CuBr, respectively. The nature of clusters 1-4 and the formation and semiconducting properties of the polymer of 4 were further examined by molecular orbital calculations at the B3LYP level of density functional theory.  相似文献   

9.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

10.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

11.
The reaction of GeBr with LiSi(SiMe(3))(3) leads to the metalloid cluster compound [(THF)(2)Li](3)Ge(14)[Si(SiMe(3))(3)](5) (1). After the introduction of a first cluster of this type, in which 14 germanium atoms form an empty polyhedron, [(THF)(2)Li](3)Ge(14)[Ge(SiMe(3))(3)](5) (2), we present here further investigations on 1 to obtain preliminary insight into its chemical and bonding properties. The molecular structure of 1 is determined via X-ray crystal structure solution using synchrotron radiation. The electronic structure of the Ge(14) polyhedron is further examined by quantum chemical calculations, which indicate that three singlet biradicaloid entities formally combine to yield the singlet hexaradicaloid character of 1. Moreover, the initial reactions of 1 after elimination of the [Li(THF)(2)](+) groups by chelating ligands (e.g., TMEDA or 12-crown-4) are presented. Collision induced dissociation experiments in the gas phase, employing FT-ICR mass spectrometry, lead to the elimination of the singlet biradicaloid Ge(5)H(2)[Si(SiMe(3))(3)](2) cluster. The unique multiradicaloid bonding character of the metalloid cluster 1 might be used as a model for reactions and properties in the field of surface science and nanotechnology.  相似文献   

12.
The protolysis of mononuclear ferric amide precursors FeCl[N(SiMe3)2]2(THF) (1) or [FeCl2{N(SiMe3)2}2]- (2) by primary amines provides, under suitable conditions, an effective route to dinuclear weak-field ferric-imide clusters with [Fe2(mu-NR)2]2+ cores. In the synthesis of known arylimide clusters [Fe2(mu-NAr)2Cl4]2- (Ar = Ph, p-Tol, Mes) from 2, the counterion has a major effect on selectivity and yield, and the use of quaternary ammonium salts affords a substantial improvement over earlier, Li+-based chemistry. The new tert-butylimide core is obtained by protolysis of 1 with excess tBuNH2 to give crystalline cis-Fe2(mu-NtBu)2Cl2(NH2tBu)2 (9). Complex 9 can be transformed to other dinuclear species through substitution of the terminal amines by pyridines, PEt3, or chloride, or through protolysis of bridging alkylimides by arylamines, allowing isolation of trans-Fe2(mu-NtBu)2Cl2(DMAP)2 (DMAP = 4-dimethylaminopyridine), cis-Fe2(mu-NtBu)2Cl2(PEt3)2, [Fe2(mu-NtBu)2Cl4]-, and trans-Fe2(mu-NPh)2Cl2(NH2tBu)2. The susceptibility of alkyl substituents to beta-elimination appears to limit the general applicability of protolytic cluster assembly using alkylamines. The dinuclear clusters have been characterized by X-ray, spectroscopic, and electrochemical analyses.  相似文献   

13.
Reduction at ambient temperature of each of the lithium benzamidinates [Li(L(1))(tmeda)] or [{Li(L(2))(OEt(2))(2)}(2)] with four equivalents of lithium metal in diethyl ether or thf furnished the brown crystalline [Li(3)(L(1))(tmeda)] (1) or [Li(thf)(4)][Li(5)(L(2))(2)(OEt(2))(2)] (2), respectively. Their structures show that in each the [N(R(1))C(R(3))NR(2)](3-) moiety has the three negative charges largely localised on each of N, N' and R = Aryl); a consequence is that the "aromatic" 2,3- and 5,6-CC bonds of R(3) approximate to being double bonds. Multinuclear NMR spectra in C(6)D(6) and C(7)D(8) show that 1 and 2 exhibit dynamic behaviour. [The following abbreviations are used: L(1) = N(SiMe(3))C(Ph)N(SiMe(3)); L(2) = N(SiMe(3))C(C(6)H(4)Me-4)N(Ph); tmeda = (Me(2)NCH(2)-)(2); thf = tetrahydrofuran.] This reduction is further supported by a DFT analysis.  相似文献   

14.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

15.
Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.  相似文献   

16.
Trisubstitued N,N',N' '-tri(alkyl)guanidinate anions have been used in the synthesis of a family of Fe(II) and Fe(III) complexes. Complexes FeCl[((i)PrN)(2)C(HN(i)Pr)](2) (1), [Fe[micro-((i)PrN)(2)C(HN(i)Pr)][((i)PrN)(2)C(HN(i)Pr)]](2) (2), and [Fe[mgr;-(CyN)(2)C(HNCy)][(CyN)(2)C(HNCy)]](2) (3) were prepared from the reaction of the appropriate lithium tri(alkyl)guanidinate and FeCl(3) or FeBr(2). The complex [FeBr[micro-(CyN)(2)C(HNCy)]](2) (4), an apparent intermediate in the formation of 3, has also been isolated and characterized. Complexes 1 and 2 react with alkyllithium reagents to yield products that depend on the identity of the reagent as well as the reaction stoichiometry. Reaction of 2 with MeLi (1:2 ratio) produces Li(2)[Fe[micro-((i)PrN)(2)C=N(i)Pr][((i)PrN)(2)C(HN(i)Pr)]](2) (5). Reaction of 1 with an equimolar amount of LiCH(2)SiMe(3) results in reduction to Fe(II) and generation of 2 while reaction with 4 LiCH(2)SiMe(3) proceeds by a combination of reduction, substitution, and deprotonation of guandinate to yield Li(4)(THF)(2)[Fe[((i)PrN)(2)CN(i)Pr](CH(2)SiMe(3))(2)](2) (7). Both complexes 5 and 7 posssess dianionic guanidinate ligands. The reaction of 2 with 1 equiv of LiCH(2)SiMe(3) generated Fe(2)[micro-((i)PrNCN(i)Pr)(2)(N(i)Pr)][((i)PrN)(2)C(HN(i)Pr)](2) (6). Compound 6 has a dianionic biguanidinate ligand derived from the coupling of the two bridging guanidinate ligands of 2.  相似文献   

17.
The clusters [Fe(6)S(8)(PEt(3))(6)](+,2+) have been shown by other investigators to be formed by the reaction of [Fe(OH(2))(6)](2+) and H(2)S, to contain face-capped octahedral Fe(6)S(8) cores, and to be components of the five-membered electron transfer series [Fe(6)S(8)(PEt(3))(6)](n)()(+) (n = 0-4) estalished electrochemically. We have prepared two additional series members. Reaction of [Fe(6)S(8)(PEt(3))(6)](2+) with iodine in dichloromethane affords [Fe(6)S(8)(PEt(3))(6)](3+), isolated as the perchlorate salt (48%). Reduction of [Fe(6)S(8)(PEt(3))(6)](2+) with Na(Ph(2)CO) in acetonitrile/THF produces the neutral cluster [Fe(6)S(8)(PEt(3))(6)] (65%). The structures of the four clusters with n = 0, 1+, 2+, 3+ were determined at 223 K. The compounds [Fe(6)S(8)(PEt(3))(6)](ClO(4))(3), [Fe(6)S(8)(PEt(3))(6)] crystallize in trigonal space group R&thremacr;c with a = 21.691(4), 16.951(4) ?, c = 23.235(6), 19.369(4) ?, and Z = 6, 3. The compounds [Fe(6)S(8)(PEt(3))(6)](BF(4))(2), [Fe(6)S(8)(PEt(3))(6)](BF(4)).2MeCN were obtained in monoclinic space groups P2(1)/c, C2/c with a = 11.673(3), 16.371(4) ?, b = 20.810(5), 16.796(4) ?, c = 12.438(4), 23.617(7) ?, beta = 96.10(2), 97.98(2) degrees, and Z = 2, 4. [Fe(6)S(8)(PEt(3))(6)](BPh(4))(2) occurred in trigonal space group P&onemacr; with a = 11.792(4) ?, b = 14.350(5) ?, c = 15.536(6) ?, alpha = 115.33(3) degrees, beta = 90.34(3) degrees, gamma = 104.49(3) degrees, and Z = 1. Changes in metric features across the series are slight but indicate increasing population of antibonding Fe(6)S(8) core orbitals upon reduction. Zero-field M?ssbauer spectra are consistent with this result, isomer shifts increasing by ca. 0.05 mm/s for each electron added, and indicate a delocalized electronic structure. Magnetic susceptibility measurements together with previously reported results established the ground states S = (3)/(2) (3+), 3 (2+), (7)/(2) (1+), 3 (0). The clusters [Fe(6)S(8)(PEt(3))(6)](n)()(+) possess the structural and electronic features requisite to multisequential electron transfer reactions. This work provides the first example of a cluster type isolated over four consecutive oxidation states. Note is also made of the significance of the [Fe(6)S(8)(PEt(3))(6)](n)()(+) cluster type in the development of iron-sulfur-phosphine cluster chemistry.  相似文献   

18.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

19.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

20.
Deng L  Majumdar A  Lo W  Holm RH 《Inorganic chemistry》2010,49(23):11118-11126
An extensive series of 3:1 site-differentiated cubane-type clusters [Fe(4)S(4)(PPr(i)(3))(3)L] (L = Cl(-), Br(-), I(-), RO(-), RS(-), RSe(-)) has been prepared in 40-80% yield by two methods: ligand substitution of [Fe(4)S(4)(PPr(i)(3))(4)](1+) in tetrahydrofuran (THF)/acetonitrile by reaction with monoanions, and reductive cleavage of ligand substrates (RSSR, RSeSeR, I(2)) by the all-ferrous clusters [Fe(8)S(8)(PPr(i)(3))(6)]/[Fe(16)S(16)(PPr(i)(3))(8)] in THF. These neutral clusters are stable and do not undergo ligand redistribution reactions involving charged species in benzene and THF solutions. X-ray structural studies confirm the cubane stereochemistry but with substantial and variable distortions of the [Fe(4)S(4)](1+) core from idealized cubic core geometry. Based on Fe-S bond lengths, seven clusters were found to have compressed tetragonal distortions (4 short and 8 long bonds), and the remaining seven display other types of distortions with different combinations of long, short, and intermediate bond lengths. These results further emphasize the facile deformabililty of this core oxidation state previously observed in [Fe(4)S(4)(SR)(4)](3-) clusters. The Fe(2.25+) mean oxidation state was demonstrated from (57)Fe isomer shifts, and the appearance of two quadrupole doublets arises from the spin-coupled |9/2,4,1/2> state. The S = 1/2 ground state was further supported by electron paramagnetic resonance spectra and magnetic susceptibility data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号