首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reaction of [V(IV)OCl(2)(THF)(2)] in aqueous solution with 2 equiv of AgBF(4) or AgSbF(6) and then with 2 equiv of 2,2'-bipyridine (bipy), 4,4'-di-tert-butyl-2,2'-bipyridine (4,4'-dtbipy), or 4,4'-di-methyl-2,2'-bipyridine (4,4'-dmbipy) affords compounds of the general formula cis-[V(IV)O(OH)(L(NN))(2)]Y [where L(NN) = bipy, Y = BF(4)(-) (1), L(NN) = 4,4'-dtbipy, Y = BF(4)(-) (2.1.2H(2)O), L(NN) = 4,4'-dmbipy, Y = BF(4)(-) (3.2H(2)O), and L(NN) = 4,4'-dtbipy, Y = SbF(6)(-) (4)]. Sequential addition of 1 equiv of Ba(ClO(4))(2) and then of 2 equiv of bipy to an aqueous solution containing 1 equiv of V(IV)OSO(4).5H(2)O yields cis-[V(IV)O(OH)(bipy)(2)]ClO(4) (5). The monomeric compounds 1-5 contain the cis-[V(IV)O(OH)](+) structural unit. Reaction of 1 equiv of V(IV)OSO(4).5H(2)O in water and of 1 equiv of [V(IV)OCl(2)(THF)(2)] in ethanol with 2 equiv of bipy gives the compounds cis-[V(IV)O(OSO(3))(bipy)(2)].CH(3)OH.1.5H(2)O (6.CH(3)OH.1.5H(2)O) and cis-[V(IV)OCl(bipy)(2)]Cl (7), respectively, while reaction of 1 equiv of [V(IV)OCl(2)(THF)(2)] in CH(2)Cl(2) with 2 equiv of 4,4'-dtbipy gives the compound cis-[V(IV)OCl(4,4'-dtbipy)(2)]Cl.0.5CH(2)Cl(2) (8.0.5CH(2)Cl(2)). Compounds cis-[V(IV)O(BF(4))(4,4'-dtbipy)(2)]BF(4) (9), cis-[V(IV)O(BF(4))(4,4'-dmbipy)(2)]BF(4) (10), and cis-[V(IV)O(SbF(6))(4,4'-dtbipy)(2)]SbF(6) (11) were synthesized by sequential addition of 2 equiv of 4,4'-dtbipy or 4,4'-dmbipy and 2 equiv of AgBF(4) or AgSbF(6) to a dichloromethane solution containing 1 equiv of [V(IV)OCl(2)(THF)(2)]. The crystal structures of 2.1.2H(2)O, 6.CH(3)OH.1.5H(2)O, and 8.0.5CH(2)Cl(2) were demonstrated by X-ray diffraction analysis. Crystal data are as follows: Compound 2.1.2H(2)O crystallizes in the orthorhombic space group Pbca with (at 298 K) a = 21.62(1) A, b = 13.33(1) A, c = 27.25(2) A, V = 7851(2) A(3), Z = 8. Compound 6.CH(3)OH.1.5H(2)O crystallizes in the monoclinic space group P2(1)/a with (at 298 K) a = 12.581(4) A, b = 14.204(5) A, c = 14.613(6) A, beta = 114.88(1) degrees, V = 2369(1), Z = 4. Compound 8.0.5CH(2)Cl(2) crystallizes in the orthorhombic space group Pca2(1) with (at 298 K) a = 23.072(2) A, b = 24.176(2) A, c = 13.676(1) A, V = 7628(2) A(3), Z = 8 with two crystallographically independent molecules per asymmetric unit. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, conductivity, and CW EPR properties of these oxovanadium(IV) compounds as well as theoretical studies on [V(IV)O(bipy)(2)](2+) and [V(IV)OX(bipy)(2)](+/0) species (X = OH(-), SO(4)(2)(-), Cl(-)).  相似文献   

2.
Mononuclear oxovanadium(IV) and dioxovanadium(V) complexes of tris(2-pyridylmethyl)amine (tpa) have been prepared for the first time. Crystal structure determinations of three oxovanadium(IV) complexes, [VO(SO4)(tpa)], [VOCl(tpa)]PF6, or [VOBr(tpa)]PF6, and a dioxovanadium(v) complex [V(O)2(tpa)]PF6 disclosed that the tertiary nitrogen of the tpa ligand always occupies the trans-to-oxo site. The structures of an oxo-peroxo complex [VO(O2)(tpa)]Cl that was prepared previously and of a mu-oxo vanadium(III) complex [{VCl(tpa)}2(mu-O)](PF6)2 have also been determined. The tertiary nitrogen is located at a trans site to the peroxo and chloride ligands, respectively. The total sums of the four V-N bond lengths from the tpa ligand are remarkably similar among the six complexes, indicating that the vanadium oxidation states become less influential in tpa bonding due primarily to the coordination of electron-donating oxo ligand(s). Absorption spectra of [VOCl(tpa)]+ in acetonitrile showed a significant change upon addition of p-toluenesulfonic acid and HClO4, but not on addition of benzoic acid. Protonation at the oxo ligand by the former two acids is suggested. Cyclic voltammetric studies in acetonitrile verified the proton-coupled redox behavior of the V(III)/V(IV) process involving the oxo ligand for the first time. From the dependence of the added p-toluenesulfonic acid to the CV, redox potentials for the following species have been estimated: [V(IV)OCl(tpa)]+/[V(III)OCl(tpa)](E1/2=-1.59 V vs. Fc+/Fc), [V(IV)(OH)Cl(tpa)]2+/[V(III)(OH)Cl(tpa)]+(Epc=-1.34 V), [V(IV)(OH2)Cl(tpa)]3+/[V(III)(OH2)Cl(tpa)]2+(Epa=-0.49 V), and [V(IV)Cl2(tpa)]2+/[V(III)Cl2(tpa)]+(E1/2=-0.89 V). The reduction of [V(V)(O)2(tpa)]+ in 0.05 M [(n-Bu)4N]PF6 acetonitrile showed a major irreversible reduction wave V(V)/(IV) at -1.48 V. The metal reduction potentials of the oxovanadium(IV) and dioxovanadium(V) species are very close, reinforcing the significant influence of the oxo ligand(s).  相似文献   

3.
The reaction of (NBu4)3[V(III)(ox)3] (1, ox = oxalate) and M(II) (M = Fe, Co, Ni, Cu) ions in MeCN, leads to the isolation of V-based coordination polymers of [N(n-Bu)4][Fe(II)V(II)I(ox)3].0.30[[N(n-Bu)4](BF4)] (2), [N(n-Bu)4][Co(II)V(III)(ox)3].0.75[[N(n-Bu)4](BF4)] (3), [N(n-Bu)4][Ni(II)V(III)(ox)3].0.20[[N(n-Bu)4](BF4)].0.20MeCN (4), and [N(n-Bu)4][Cu(II)V(III)(ox)2](BF4)2 (5) composition. Due to the lability of [V(III)(ox)3]3- to dissociate ox2-, these compounds cannot be prepared from aqueous media. 5 is best described as [N(n-Bu)4][V(III)Cu(II)(ox)2](BF4)2, and 2, 3, 4, and 5 are proposed to have a layered (2-D) motif for the MM(ox)x (x = 2, 3) extended framework. The [V(III)Cu(II)(ox)2] composition of 5 is reported for the first time for a bimetallic oxalate. 2 shows a weak antiferromagnetic interaction between Fe(II), S = 2 and V(III), S = 1 ions (theta = -9.4 K) within the 2-D layers. 3 and 5 do not magnetically order above 2 K. 4 magnetically order as ferromagnets below 2.55 K [taken as the onset of magnetization in chi'(T)], and has a glass transition temperature (chi'(max) at 1000 Hz) at 2.26 K.  相似文献   

4.
The crystal structure of [{O=VV(salen)}2(mu-F)][VIVO(salen)][BF4].(CH2Cl2)x revealed a hollow cavity with a diameter of 5.3 A that penetrates through the crystal, and a remarkable cyclic chain of the [VO(salen)] unit, a motif that has never been fashioned from oxometal building blocks. These features endow the crystal with a molecular sievelike property for the rapid, reversible, and size-selective absorption of guest CH2Cl2 molecules.  相似文献   

5.
Five oxovanadium(IV) complexes [VO(X4salen)] have been prepared and characterized, where each benzene ring was substituted with two halogen atoms in salen (H2salen = N,N′-disalicylideneethylenediamine). The X-ray diffraction study on 3,3′,5,5′-tetrachloro-, 3,3′,5,5′-tetrabromo-, and 4,4′,6,6′-tetrachlorosalen derivatives clarified their polymeric structure with the (-VO-)n repeating unit. The interatomic V···V distances are 3.710(3), 3.695(3), and 3.749(3) Å, respectively, being shorter than that of known [VO(salpn)] (3.83 Å; H2salpn = N,N′-disalicylidenepropylenediamine). The exchange coupling parameters (J) were determined by fitting the magnetic susceptibility data to the one-dimensional ferromagnetic model, giving 2J/kB = 8.2-16 K, which are the largest in the [VO(salen)] and [VO(salpn)] family.  相似文献   

6.
The syntheses, X-ray structures, and magnetic behaviors of two new cyano-bridged assemblies, the molecular [Mn(III)(salen)H2O]3[W(V)(CN)8].H2O (1) and one-dimensional [Mn(salen)(H2O)2]2[[Mn(salen)(H2O)][Mn(salen)]2[Mo(CN)(8)]].0.5ClO4.0.5OH.4.5H2O (2), are presented. Compound 1 crystallizes in the monoclinic system, has space group P2(1)/c, and has unit cell constants a = 13.7210(2) A, b = 20.6840(4) A, c = 20.6370(2) A, and Z = 4. Compound 2 crystallizes in the triclinic system, has space group P, and has unit cell dimensions a = 18.428(4) A, b = 18.521(3) A, c = 18.567(4) A, and Z = 2. The structure of 1 consists of the asymmetric V-shaped Mn-NC-W-NC-Mn-O(phenolate)-Mn molecules, where W(V) coordinates with [Mn(salen)H2O] and singly phenolate-bridged [Mn(salen)H2O]2 moieties through the neighboring cyano bridges. The [W(V)(CN)8]3- ion displays distorted square-antiprism geometry. The structure of 2 consists of the cyano-bridged [Mn3(III)Mo(IV)]n- repeating units linked by double phenolate bridges into one-dimensional zigzag chains. The Mn(III) centers are bound to Mo(IV) of square-antiprism geometry through the neighboring cyano bridges. The magnetic studies of 1 reveal the antiferromagnetic intramolecular interactions through the CN and phenolate bridges and the relatively weak intermolecular interactions. Compound 1 becomes antiferromagnetically ordered below TN = 4.6 K. The presence of the magnetic anisotropy is documented with the MH measurements carried out for both polycrystalline and single-crystal samples. At T = 1.9 K, the spin-flop transition is observed in the field of 18 kOe applied parallel to the bc plane, which is the easy plane of magnetization. Field dependence of magnetization of 1 shows field-induced metamagnetic behavior from the antiferromagnetic ground state of ST = 3/2 to the state of ST = 5/2. The magnetic properties of 2 indicate a weak antiferromagnetic interaction between Mn(III) centers in double-phenolate-bridged [Mn(III)(salen)]2 dinuclear subunits and a very weak ferromagnetic interaction between them through the diamagnetic [Mo(IV)(CN)8]4- spacer.  相似文献   

7.
The complex cation [{V(daptsc)(MeOH)}2(mu-O)]2+ [daptsc(2-) = 2,6-diacetylpyridine bis(thiosemicarbazonate)] is the first crystallographically elucidated dimer to possess a [V2O]6+ core, the [V(IV)-O-V(IV)]6+ structural unit, formed by cleavage of the multiple bond in the oxo-cation VO2+, is linear with the oxo group residing on a crystallographic center of inversion, and the temperature dependence of the magnetic data of the dimer is consistent with weak antiferromagnetic coupling of the d1-d1 centers.  相似文献   

8.
Treatment of [Et(4)N][M(CO)(6)] (M = Nb, Ta) with I(2) in DME at -78 degrees C produces solutions of the bimetallic anions [M(2micro-I)(3)(CO)(8)](-). Addition of the tripodal phosphine (t)BuSi(CH(2)PMe(2))(3) (trimpsi) followed by refluxing affords (trimpsi)M(CO)(3)I [M = Nb (1), Ta (2)], which are isolable in good yields as air-stable, orange-red microcrystalline solids. Reduction of these complexes with 2 equiv of Na/Hg, followed by treatment with Diazald in THF, results in the formation of (trimpsi)M(CO)(2)(NO) [M = Nb (3), Ta (4)] in high isolated yields. The congeneric vanadium complex, (trimpsi)V(CO)(2)(NO) (5), can be prepared by reacting [Et(4)N][V(CO)(6)] with [NO][BF(4)] in CH(2)Cl(2) to form V(CO)(5)(NO). These solutions are treated with 1 equiv of trimpsi to obtain (eta(2)-trimpsi)V(CO)(3)(NO). Refluxing orange THF solutions of this material affords 5 in moderate yields. Reaction of (trimpsi)VCl(3)(THF) (6) with 4 equiv of sodium naphthalenide in THF in the presence of excess CO provides [Et(4)N][(trimpsi)V(CO)(3)] (7), (trimpsi)V(CO)(3)H, and [(trimpsi)V(micro-Cl)(3)V(trimpsi)][(eta(2)-trimpsi)V(CO)(4)].3THF ([8][9].3THF). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2.(1)/(2)THF, 3-5, and [8][9].3THF have been established by X-ray diffraction analyses. The solution redox properties of 3-5 have also been investigated by cyclic voltammetry. Cyclic voltammograms of 3 and 4 both exhibit an irreversible oxidation feature in CH(2)Cl(2) (E(p,a) = -0.71 V at 0.5 V/s for 3, while E(p,a) = -0.55 V at 0.5 V/s for 4), while cyclic voltammograms of 5 in CH(2)Cl(2) show a reversible oxidation feature (E(1/2) = -0.74 V) followed by an irreversible feature (0.61 V at 0.5 V/s). The reversible feature corresponds to the formation of the 17e cation [(trimpsi)V(CO)(2)(NO)](+) ([5](+)()), and the irreversible feature likely involves the oxidation of [5](+)() to an unstable 16e dication. Treatment of 5 with [Cp(2)Fe][BF(4)] in CH(2)Cl(2) generates [5][BF(4)], which slowly decomposes once formed. Nevertheless, [5][BF(4)] has been characterized by IR and ESR spectroscopies.  相似文献   

9.
Dai Z  Chen X  Shi Z  Zhang D  Li G  Feng S 《Inorganic chemistry》2003,42(3):908-912
Two inorganic-organic hybrid compounds with the formula M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (M = Co, Ni) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compounds Co(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (1) and Ni(4,4'-bipy)(H(2)O)V(2)Se(2)O(10) (2), which are structural analogues, crystallize in the triclinic space group Ponemacr; with crystal data a = 7.9665(3) A, b = 8.1974(3) A, c = 13.8096(4) A, alpha = 85.704(2) degrees, beta = 73.5180(10) degrees, gamma = 75.645(2) degrees, V = 837.76(5) A(3), and Z = 2 and a = 7.9489(19) A, b = 8.128(2) A, c = 13.709 A, alpha = 85.838(6) degrees, beta = 73.736(8) degrees, gamma = 75.594(9) degrees, V = 823.5(4) A(3), and Z = 2, respectively. [M(4,4'-bipy)(H(2)O)V(2)Se(2)O(10)] (M = Co, Ni) have a three-dimensional structure and consist of two subunits, [(VO(2))(SeO(3))](-) infinite chains and [M(4,4'-bipy)(H(2)O)](2+) fragments. The [(VO(2))(SeO(3))](-) chains are composed of [V(2)Se(4)O(14)](4)(-) clusters linked by VO(4)N triangular bipyramids. The 4,4'-bipy molecule as a bifunctional organic ligand is directly linked to Co or Ni and V atoms, affording the three-dimensionality. The compounds were characterized by infrared spectroscopy and differential thermal and thermogravimetric analyses.  相似文献   

10.
Oxovanadium(IV) complexes [VO(salmet)(B)] (1-3) and [VO(saltrp)(B)] (4-6), where salmet and saltrp are N-salicylidene-l-methionate and N-salicylidene-l-tryptophanate, respectively, and B is a N,N-donor heterocyclic base (viz. 1,10-phenanthroline (phen, 1, 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2, 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3, 6)) are prepared and characterized and their DNA binding and photoinduced DNA cleavage activity studied. Complexes 1, 2, and 4 are structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in the VO3N3 coordination geometry. The dianionic alpha-amino acid Schiff base acts as a tridentate O,N,O-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of bonding with a N-donor site trans to the oxo group. The complexes show a d-d band in the range of 680-710 nm in DMF with a shoulder near 840 nm. They exhibit an irreversible oxidative cyclic voltammetric response near 0.8 V assignable to the V(V)/V(IV) couple and a quasi-reversible V(IV)/V(III) redox couple near -1.1 V vs SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range from 5.2 x 10(4) to 7.2 x 10(5) M(-1). The binding site size, thermal melting, and viscosity data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor "chemical nuclease" activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity on irradiation with UV-A light of 365 nm via a mechanistic pathway involving formation of singlet oxygen as the reactive species. They also show significant DNA cleavage activity on photoexcitation in red light (>750 nm) by (1)O2 species. Observation of red-light-induced cleavage of DNA is unprecedented in the vanadium chemistry. The DNA cleavage activity is metal promoted as the ligands or vanadyl sulfate alone are cleavage inactive on photoirradiation at these wavelengths.  相似文献   

11.
Binuclear, mu-bis(oxo)bis{oxovanadium(V)} complexes [(VOL)2(mu-O)2](2 and 7)(where HL are the hydrazones Hacpy-nah I or Hacpy-fah II; acpy = 2-acetylpyridine, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) were prepared by the reaction of [VO(acac)2] and the ligands in methanol followed by aerial oxidation. The paramagnetic intermediate complexes [VO(acac)(acpy-nah)](1) and [VO(acac)(acpy-fah)](6) have also been isolated. Treatment of [VO(acac)(acpy-nah)] and [VO(acac)(acpy-fah)] with aqueous H2O2 yields the oxoperoxovanadium(V) complexes [VO(O2)(acpy-nah)](3) and [VO(O2)(acpy-fah)](8). In the presence of catechol (H2cat) or benzohydroxamic acid (H2bha), 1 and 6 give the mixed chelate complexes [VO(cat)L](HL =I: 4, HL =II: 9) or [VO(bha)L](HL =I: 5, HL =II: 10). Complexes 4, 5, 9 and 10 slowly convert to the corresponding oxo-mu-oxo species 2 and 7 in DMF solution. Ascorbic acid enhances this conversion under aerobic conditions, possibly through reduction of these complexes with concomitant removal of coordinated catecholate or benzohydroxamate. Acidification of 7 with HCl dissolved in methanol afforded a hydroxo(oxo) complex. The crystal and molecular structure of 2.1.5H2O has been determined, and the structure of 7 re-determined, by single crystal X-ray diffraction. Both of these binuclear complexes contain the uncommon asymmetrical {VO(mu-O)}2 diamond core. The in vitro tests of the antiamoebic activity of ligands I and II and their binuclear complexes 2 and 7 against the protozoan parasite Entamoeba histolytica show that the ligands have no amoebicidal activity while their vanadium complexes 2 and 7 display more effective amoebicidal activity than the most commonly used drug metronidazole (IC50 values are 1.68 and 0.45 microM, respectively vs 1.81 microM for metronidazole). Complexes 2 and 7 catalyse the oxidation of styrene and ethyl benzene effectively. Oxidation of styrene, using H2O2 as an oxidant, gives styrene epoxide, 2-phenylacetaldehyde, benzaldehyde, benzoic acid and 1-phenyl-ethane-1,2-diol, while ethyl benzene yields benzyl alcohol, benzaldehyde and 1-phenyl-ethane-1,2-diol.  相似文献   

12.
The kinetics of oxidation of bis(maltolato)oxovanadium(IV), BMOV or VO(ma)(2), by dioxygen have been studied by UV-vis spectroscopy in both MeOH and H(2)O media. The VO(ma)(2):O(2) stoichiometry was 4:1. In aqueous solution, the pH-dependent rate of the VO(ma)(2)/O(2) reaction to generate cis-[VO(2)(ma)(2)](-) is attributed to the deprotonation of coordinated H(2)O, the deprotonated species [VO(ma)(2)(OH)](-) being more easily oxidized (k(OH) = 0.39 M(-)(1) s(-)(1), 25 degrees C) than the neutral form VO(ma)(2)(H(2)O) (k(H)()2(O) = 0.08 M(-)(1) s(-)(1), 25 degrees C). The activation parameters for the two second-order reactions in aqueous solution were deduced from variable temperature kinetic measurements. In MeOH, VO(ma)(2) was oxidized by dioxygen to cis-VO(OMe)(ma)(2), whose structure was characterized by single-crystal X-ray diffraction; the crystals were monoclinic, C2/c, with a = 28.103(1) ?, b = 7.721(2) ?, c = 13.443(2) ?, beta = 94.290(7) degrees, and Z = 8. The structure was solved by Patterson methods and was refined by full-matrix least-squares procedures to R = 0.043 for 1855 reflections with I >/= 3sigma(I). The kinetic results are consistent with a mechanism involving an attack of O(2) at the V(IV) center, followed by the formation of radicals and H(2)O(2) as transient intermediates.  相似文献   

13.
Lam WW  Man WL  Wang YN  Lau TC 《Inorganic chemistry》2008,47(15):6771-6778
The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.  相似文献   

14.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

15.
A series of new silver(I)-containing MOFs [Ag(2)(tr(2)ad)(2)](ClO(4))(2) (1), [Ag(2)(VO(2)F(2))(2)(tr(2)ad)(2)]·H(2)O (2), [Ag(2)(VO(2)F(2))(2)(tr(2)eth)(2)(H(2)O)(2)] (3), and [Ag(2)(VO(2)F(2))(2)(tr(2)cy)(2)]·4H(2)O (4) supported by 4-substituted bifunctional 1,2,4-triazole ligands (tr(2)ad = 1,3-bis(1,2,4-triazol-4-yl)adamantane, tr(2)eth = 1,2-bis(1,2,4-triazol-4-yl)ethane, tr(2)cy = trans-1,4-bis(1,2,4-triazol-4-yl)cyclohexane) were hydrothermally synthesized and structurally characterized. In these complexes, the triazole heterocycle as an N(1),N(2)-bridge links either two adjacent Ag-Ag or Ag-V centers at short distances forming polynuclear clusters. The crystal structure of compound 1 is based on cationic {Ag(2)(tr)(4)}(2+) fragments connected in a 2D rhombohedral grid network with (4,4) topology. The neighboring layers are tightly packed into a 3D array by means of argentophilic interactions (Ag···Ag 3.28 ?). Bridging between different metal atoms through the triazole groups assists formation of heterobimetallic Ag(I)/V(V) secondary building blocks in a linear V-Ag-Ag-V sequence that is observed in complexes 2-4. These unprecedented tetranuclear {Ag(2)(VO(2)F(2))(2)(tr)(4)} units (the intermetal Ag-Ag and Ag-V distances are 4.24-4.36 and 3.74-3.81 ?, respectively), in which vanadium(V) oxofluoride units possess distorted trigonal bipyramidal environment {VO(2)F(2)N}ˉ, are incorporated into 1D ribbon (2) or 2D square nets (3, 4) using bitopic μ(4)-triazole ligands. The valence bond calculation for vanadium atoms shows +V oxidation state in the corresponding compounds. Thermal stability and photoluminescence properties were studied for all reported coordination polymers.  相似文献   

16.
Vanadium Complexes with Tridentate Diacidic Ligands. The Crystal Structures of Bis[acetylacetonato-thiobenzoylhydrazonato(2-)]vanadium(IV), Methoxo-oxo-[salicylaldehyd-thiobenzoylhydrazonato(2-)]vanadium(V), and Methoxo-oxo-[salicylaldehydbenzoylhydrazonato(2-)]methanol Vanadium(V) By template reactions of bis(acetylacetonato)oxovanadium(IV) and bis(salicylaldehydato)oxo-vanadium(IV), respectively, with benzoylhydrazine, thiobenzoylhydrazine, and 2-aminophenol the vanadium(IV) complexes V(LLL)2 of tridentate azomethine ligands LLL were synthesized. The complexes were characterized by EPR spectroscopy and by absorption spectroscopy. From the complex V(LLL)2 ( 1 ), in which LLL is acetyl-aceton-thiobenzoydrazonate(2-), the crystal structure analysis was solved. The vanadium atom in 1 is coordinated trigonal-prismatically by two N, 0 and S atoms. Furthermore, the 0x0 vanadium(V) complexes[VO(LLL)(OCH,)] (6) with LLL = salicylaldehyd-thio-benzoylhydrazonato(2-) and [VO(LLL)(OCH3)· -CH3OH] (7) with LLL = salicylaldehydbenzoylhydrazonato(2-) were identified by X-ray diffraction and by IR spectroscopy in the reaction products. Crystallographic data for 1, 6 , and 7 see ?Inhaltsübersicht”?.  相似文献   

17.
The reaction of manganese(III) Schiff bases of the type salen(2-) (N,N'-ethylenebis(salicylideneaminato)) with X-substituted (X = CH(3), Cl) pyridinecarboxamide dicyanoferrite(III) [Fe(X-bpb)(CN)(2)](-) gave rise to a series of cyanide-bridged Mn(6)Fe(6) molecular wheels, [Mn(III)(salen)](6)[Fe(III)(bpmb)(CN)(2)](6) x 7H(2)O (1), [Mn(salen)](6)[Fe(bpClb)(CN)(2)](6) x 4H(2)O x 2CH(3)OH (2), [Mn(salen)](6)[Fe(bpdmb)(CN)(2)](6) x 10H(2)O x 5CH(3)OH (3), [Mn(5-Br(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 24H(2)O x 8CH(3)CN (4), and [Mn(5-Cl(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 25H(2)O x 5CH(3)CN (5). Compared with [Fe(bpb)(CN)(2)](-), which always gives rise to 1D or polynuclear species when reacting with Mn(III) Schiff bases, the introduction of substituents (X) to the bpb(2-) ligand has a driving force in formation of the novel wheel structure. Magnetic studies reveal that high-spin ground state S = 15 is present in the wheel compounds originated from the ferromagnetic Mn(III)-Fe(III) coupling. For the first time, the quantum Monte Carlo study has been used to modulate the magnetic susceptibility of the huge Mn(6)Fe(6) metallomacrocycles, showing that the magnetic coupling constants J range from 3.0 to 8.0 K on the basis of the spin Hamiltonian [Formula: see text]. Hysteresis loops for 1 have been observed below 0.8 K, indicative of a single-molecule magnet with a blocking temperature (TB) of 0.8 K. Molecular wheels 2-5 exhibit frequency dependence of alternating-current magnetic susceptibility under zero direct-current magnetic field, signifying the slow magnetization relaxation similar to that of 1. Significantly, an unprecedented archlike Mn(2)Fe(2) cluster, [Mn(5-Cl(salpn))](2)[Fe(bpmb)(CN)(2)](2) x 3H(2)O x CH(3)CN (6), has been isolated as an intermediate of the Mn(6)Fe(6) wheel 5. Ferromagnetic Mn(III)-Fe(III) coupling results in a high-spin S = 5 ground state. Combination of the high-spin state and a negative magnetic anisotropy (D) results in the observation of slow magnetization relaxation in 6.  相似文献   

18.
Slow diffusion in a H-tube at room temperature of a methanolic solution of [VO(acac)(2)] (Hacac = acetylacetone) and 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy) into an aqueous solution of sodium pyrophosphate (Na(4)P(2)O(7)) resulted in the serendipitous formation of X-ray quality crystals of mixed-valent, hexameric oxovanadates of general formula [V(6)O(12)(OCH(3))(4)(L)(4)]·solv [L = 1,10-phenanthroline (phen) for 1· 2CH(3)OH · 4H(2)O (1a), and 2,2'-bipyridine (bipy) for 2· 4H(2)O (2a)]. These were characterized by single-crystal X-ray diffraction, IR, elemental and thermogravimetric analysis (TGA). A facile, rationalized synthetic route for the isolation of 1a and 2a could be established following structural determination, involving NaOH in place of Na(4)P(2)O(7) as pH modulator. The use of distilled water (pH 7) as methanolic co-solvent also resulted in crystallization of the two complexes, proving the presence of a base in the reaction scheme is not vital, with slightly pH-depended yields noted for 2a only. A survey of the literature revealed the occurrence of several other procedures, from classical methods to hydrothermal routes, leading to different solvates of 1, the crystal structure of 2 being unreported in any form to date. The precise nature of the molecular assembly in these type of hybrid organic-inorganic poly-vanadates is contradictory in published reports. On the basis of newly acquired high resolution crystal data and supported by magnetic investigation of the samples, we propose herein a formulation as [(V(IV)O)(2)(V(V)O(2))(4)(μ(3)-O)(2)(μ-OCH(3))(4)(L)(4)], with two oxovanadyl(IV) and four dioxovanadyl(V) units per molecule. A net ferromagnetic coupling between the two isolated V(IV) metal centers was measured with literature-consistent J values of +16.1(1) and +19.7(1) cm(-1) for 1a and 2a, respectively [H = -JS(A)·S(B) + S(A)·D·S(B) + βH (g(A)S(A) + g(B)S(B))], suggesting that crystal packing forces do not significantly influence the magnetic properties of this class of materials. A facile route toward the synthesis of the fully-oxidized [V(V)(4)O(8)(CH(3)O)(4)(bipy)(2)] and [V(V)(4)O(6)(CH(3)O)(6)(acac)(2)] tetraoxovanadates is also reported.  相似文献   

19.
Five oxovanadium(iv) complexes, which were divided into two groups, [V(IV)O(bhbb, nhbb)(H(2)O)(2)] (tridentate ligands: H(2)bhbb = 2-(5-bromo-2-hydroxylbenzylideneamino)benzoic acid, ; H(2)nhbb = 2-(5-nitro-2-hydroxylbenzylideneamino)benzoic acid, ) and [V(IV)O(cpmp, bpmp, npmp)(2)] (bidentate ligands: Hcpmp = 4-chloro-2-((phenylimino)methyl)phenol, ; Hbpmp = 4-bromo-2-((phenylimino)methyl)phenol, ; Hnpmp = 4-nitro-2-((phenylimino)methyl) phenol, ) have been prepared and characterized by elemental analysis, infrared, UV-visible and electrospray ionization mass spectrometry. The coordination in [V(IV)O(bhbb)(H(2)O)(2)] () was confirmed by X-ray crystal structure analysis. The oxidation state of V(iv) with d(1) configuration in was confirmed by EPR. The speciation of VO/H(2)bhbb in methanol-aqueous solution was investigated by potentiometric pH titrations. The result indicated that the main species were [V(IV)O(bhbb)(OH)](-) and [V(IV)O(bhbb)(OH)(2)](2-) at the pH range 7.0-7.4. The structure-activity relationship of the vanadium complexes in inhibiting protein tyrosine phosphatases (protein tyrosine phosphatase 1B, PTP1B; T-cell protein tyrosine phosphatase, TCPTP; megakaryocyte protein-tyrosine phosphatase, PTP-MEG2; Src homology phosphatase 1, SHP-1 and Src homology phosphatase 2, SHP-2) was investigated. The oxovanadium(iv) complexes were potent inhibitors of PTP1B, TCPTP, PTP-MEG2, SHP-1 and SHP-2, but exhibited different inhibitory abilities over different PTPs. Complexes and displayed better selectivity to PTP1B over the other four PTPs. Kinetic data showed that complex inhibited PTP1B, TCPTP and SHP-1 with a noncompetitive inhibition mode, but a classical competitive inhibition mode for PTP-MEG2 and SHP-2. The results demonstrated that both the structures of vanadium complexes and the conformations of PTPs influenced PTP inhibition activity. The proper modification of the organic ligand moieties may result in screening potent and selective vanadium-based PTP1B inhibitors.  相似文献   

20.
The syntheses and properties of tetra- and pentanuclear vanadium(IV,V) carboxylate complexes are reported. Reaction of (NBzEt(3))(2)[VOCl(4)] (1a) with NaO(2)CPh and atmospheric H(2)O/O(2) in MeCN leads to formation of (NBzEt(3))(2)[V(5)O(9)Cl(O(2)CPh)(4)] 4a; a similar reaction employing (NEt(4))(2)[VOCl(4)] (1b) gives (NEt(4))(2)[V(5)O(9)Cl(O(2)CPh)(4)] (4b). Complex 4a.MeCN crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -148 degrees C: a = 13.863(13) ?, b = 34.009(43) ?, c = 12.773(11) ?, and Z = 4. The reaction between (NEt(4))(2)[VOBr(4)] (2a) and NaO(2)CPh under similar conditions gives (NEt(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6a), and the use of (PPh(4))(2)[VOBr(4)] (2b) likewise gives (PPh(4))(2)[V(5)O(9)Br(O(2)CPh)(4)] (6b). Complex 6b crystallizes in space group P2(1)2(1)2(1) with the following unit cell dimensions at -139 degrees C: a = 18.638(3) ?, b = 23.557(4) ?, c = 12.731(2) ?, and Z = 4. The anions of 4a and 6b consist of a V(5) square pyramid with each vertical face bridged by a &mgr;(3)-O(2)(-) ion, the basal face bridged by a &mgr;(4)-X(-) (X = Cl, Br) ion, and a terminal, multiply-bonded O(2)(-) ion on each metal. The RCO(2)(-) groups bridge each basal edge to give C(4)(v)() virtual symmetry. The apical and basal metals are V(V) and V(IV), respectively (i.e., the anions are trapped-valence). The reaction of 1b with AgNO(3) and Na(tca) (tca = thiophene-2-carboxylate) in MeCN under anaerobic conditions gives (NEt(4))(2)[V(4)O(8)(NO(3))(tca)(4)] (7). Complex 7.H(2)O crystallizes in space group C2/c with the following unit cell dimensions at -170 degrees C: a = 23.606(4) ?, b = 15.211(3) ?, c = 23.999(5) ?, and Z = 4. The anion of 7 is similar to those of 4a and 6b except that the apical [VO] unit is absent, leaving a V(4) square unit, and the &mgr;(4)-X(-) ion is replaced with a &mgr;(4),eta(1)-NO(3)(-) ion. The four metal centers are now at the V(IV), 3V(V) oxidation level, but the structure indicates four equivalent V centers, suggesting an electronically delocalized system. Variable-temperature magnetic susceptibility data were collected on powdered samples of 4b, 6a, and 7 in the 2.00-300 K range in a 10 kG applied field. 4b and 6a both show a slow increase in effective magnetic moment (&mgr;(eff)) from approximately 3.6-3.7 &mgr;(B) at 320 K to approximately 4.5-4.6 &mgr;(B) at 11.0 K and then a slight decrease to approximately 4.2 &mgr;(B) at 2.00 K. The data were fit to the theoretical expression for a V(IV)(4) square with two exchange parameters J = J(cis)() and J' = J(trans)() (H = -2JS(i)()S(j)()): fitting of the data gave, in the format 4b/6a, J= +39.7/+46.4 cm(-)(1), J' = -11.1/-18.2 cm(-)(1) and g = 1.83/1.90, with the complexes possessing S(T) = 2 ground states. The latter were confirmed by magnetization vs field studies in the 2.00-30.0 K and 0.500-50.0 kG ranges: fitting of the data gave S(T) = 2 and D = 0.00 cm(-)(1) for both complexes, where D is the axial zero-field splitting parameter. Complex 7 shows a nearly temperature-independent &mgr;(eff) (1.6-2.0 &mgr;(B)) consistent with a single d electron per V(4) unit. The (1)H NMR spectra of 4b and 6a in CD(3)CN are consistent with retention of their pentanuclear structure on dissolution. The EPR spectrum of 7 in a toluene/MeCN (1:2) solution at approximately 25 degrees C yields an isotropic signal with a 29-line hyperfine pattern assignable to hyperfine interactions with four equivalent I = (7)/(2) (51)V nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号