首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
51V magic angle spinning NMR was applied to the alpha(II), beta and gamma phases of VOPO4 at three magnetic field strengths (4.7, 7.1, and 11.7 T). The 51V quadrupole and chemical shift tensors were determined by iterative fitting of the NMR lineshapes at the three magnetic field strengths. The applicability of the method is illustrated by comparison with literature data. Although determined chemical shift tensors are completely axially symmetric and of the same magnitude, all studied phases can clearly be distinguished by their quadrupole coupling tensor. Relationships between the 51V NMR data and structural characteristics such as crystal symmetries are discussed.  相似文献   

3.
High-resolution NMR spectroscopy for paramagnetic complexes in solids has been rarely performed because of its limited sensitivity and resolution due to large paramagnetic shifts and associated technical difficulties. The present study demonstrates that magic angle spinning (MAS) at speeds exceeding 20 kHz provides unusually high sensitivity and excellent resolution in 1H solid-state NMR (SSNMR) for paramagnetic systems. Spinning-speed dependence of 1H MAS spectra showed that very fast MAS (VFMAS) at 24-28 kHz enhanced sensitivity by a factor of 12-18, compared with the sensitivity of 1H SSNMR spectra under moderate MAS at 10 kHz, for Cu(dl-alanine)2.H2O and Mn(acac)3, for which the spectral ranges due to 1H paramagnetic shifts reach 200 and 1000 ppm, respectively. It was theoretically and experimentally confirmed that the absolute sensitivity of 1H VFMAS for small paramagnetic complexes such as Cu(dl-alanine)2 can be an order of magnitude higher than that of equimolar diamagnetic ligands because of short 1H T1 ( approximately 1 ms) of the paramagnetic systems and improved sensitivity under VFMAS. On the basis of this demonstrated high sensitivity, 1H SSNMR micro analysis of paramagnetic systems in a nanomole scale is proposed. Applications were performed on two polymorphs of Cu(II)(8-quinolinol)2, which is a suppressor of human cancer cells. It was demonstrated that 1H VFMAS SSNMR spectra accumulated for 20 nmol of the polycrystalline samples in 10 min enabled one to distinguish alpha- and beta-forms of Cu(II)(8-quinolinol)2 on the basis of shift positions and line widths.  相似文献   

4.
(51)V solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V)O(2)-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V)O(2)-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8 to 8.3 MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600 ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V)O(2)- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the (51)V NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5 A of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V)O(2) series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.  相似文献   

5.
An alternative setup for Magic Angle Oriented Spinning Spectroscopy is proposed. Samples were prepared by orienting lipid bilayers onto polymer films, which were wrapped into a spiral so as to fit into 4 or 7 mm MAS rotors. This geometry resulted in narrow line widths and a higher upper spinning limit when compared to the conventional MAOSS setup with stacked glass plates. Whereas orientational information was extracted from low spinning spectra, fast spinning will be applicable to high-resolution multidimensional NMR pulse sequences.  相似文献   

6.
Using (51)V magic angle spinning solid-state NMR, SSNMR, spectroscopy and quantum chemical DFT calculations we have characterized the chemical shift and quadrupolar coupling parameters of a series of eight hydroxylamido vanadium(V) dipicolinate complexes of the general formula VO(dipic)(ONR1R2)(H2O) where R1 and R2 can be H, CH3, or CH2CH3. This class of vanadium compounds was chosen for investigation because of their seven-coordinate vanadium atom, a geometry for which there is limited (51)V SSNMR data. Furthermore, a systematic series of compounds with different electronic properties are available and allows for the effects of ligand substitution on the NMR parameters to be studied. The quadrupolar coupling constants, C(Q), are small, 3.0-3.9 MHz, but exhibit variations as a function of the ligand substitution. The chemical shift tensors in the solid state are sensitive to changes in both the hydroxylamide substituent and the dipic ligand, a sensitivity which is not observed for isotropic chemical shifts in solution. The chemical shift tensors span approximately 1000 ppm and are nearly axially symmetric. On the basis of DFT calculations of the chemical shift tensors, one of the largest contributors to the magnetic shielding anisotropy is an occupied molecular orbital with significant vanadium d(z)2 character along the V=O bond.  相似文献   

7.
The strategy of investigation of the structures and transformations of organometallic compounds by high-resolution NMR spectroscopy in solutions and in the solid state (cross-polarization magic angle spinning NMR) was considered in relation to tricarbonylchromium complexes with polycyclic aromatic ligands.  相似文献   

8.
Highly resolved solid-state HETCOR NMR spectra between protons and low gamma nuclei ((13)C and (29)Si) can be suitably obtained on surfaces using a "brute force" (1)H-(1)H decoupling by MAS at rates > or =40 kHz. Despite a small rotor volume (<10 microL), a (1)H-(13)C HETCOR spectrum of allyl groups (AL, -CH(2)-CH=CH(2)) covalently anchored to the surface of MCM-41 silica was acquired without using isotope enrichment. The advantages of using fast MAS in such studies include easy setup, robustness, and the opportunity of using low RF power for decoupling. In the case of the (1)H-(29)Si HETCOR experiment, the sensitivity can be dramatically increased, in some samples by more than 1 order of magnitude, through implementing into the pulse sequence a Carr-Purcell-Meiboom-Gill train of pi pulses at the (29)Si spin frequency. The use of low-power heteronuclear decoupling is essential in the (1)H-(29)Si CPMG-HETCOR experiment, due to unusually long acquisition periods. These methods provided detailed structural characterization of the surface of AL-MCM mesoporous silica.  相似文献   

9.
De novo site-specific 13C and 15N backbone and sidechain resonance assignments are presented for uniformly enriched E. coli thioredoxin, established using two-dimensional homo- and heteronuclear solid-state magic angle spinning NMR correlation spectroscopy. Backbone dihedral angles and secondary structure were derived from the statistical analysis of the secondary chemical shifts, and are in good agreement with solution values for the intact full-length thioredoxin, with the exception of a small number of residues located at the termini of the individual secondary structure elements. A large number of cross-peaks observed in the DARR spectra with long mixing times correspond to the pairs of carbon atoms separated by 4-6 angstroms, suggesting that DARR could be efficiently employed for observation of medium- and long-range correlations. The 108 amino acid residue E. coli thioredoxin is the largest uniformly enriched protein assigned to this degree of completeness by solid-state NMR spectroscopy to date. It is anticipated that with a combination of two-dimensional correlation experiments and high magnetic fields, resonance assignments and secondary structure can be generally derived for other noncrystalline proteins.  相似文献   

10.
Vanadium environments in Keggin oxopolytungstates were characterized by (51)V solid-state MAS NMR spectroscopy. (C(4)H(9))(4)N(+)-, K(+)-, Cs(+)-, as well as mixed Na(+)/Cs(+)- salts of the mono-, di-, and trivanadium substituted oxotungstates, [VW(11)O(40)](4-), [V(2)W(10)O(40)](5-), and [V(3)W(9)O(40)](6-), have been prepared as microcrystalline and crystalline solids. Solid-state NMR spectra report on the local environment of the vanadium site in these Keggin ions via their anisotropic quadrupolar and chemical-shielding interactions. These (51)V fine structure constants in the solid state are determined by the number of vanadium atoms present in the oxoanion core. Surprisingly, the quadrupolar anisotropy tensors do not depend to any significant extent on the nature of the countercations. On the other hand, the chemical-shielding anisotropy tensors, as well as the isotropic chemical shifts, display large variations as a function of the cationic environment. This information can be used as a probe of the local cationic environment in the vanadium-substituted Keggin solids.  相似文献   

11.
We present the use of 2H magic-angle spinning (MAS) NMR on methyl-deuterated alpha-amino isobutyric acid (Aib) as a new method to obtain fast and accurate structural constraints on peptaibols in membrane-bound environments. Using nonoriented vesicle-reconstituted samples we avoid the delicate preparation of oriented samples, and the use of MAS ensures high sensitivity and thereby very fast acquisition of experimental spectra. Furthermore, given the high content ( approximately 40%) of Aib in peptaibols and the fact that the amino acid Aib may be synthesized from cheap starting materials, even in the case of 2H, 13C, or 15N labeling, this method is ideally suited for studies of the membrane-bound conformation of peptaibols.  相似文献   

12.
We show that (27)Al triple-quantum magic angle spinning (3Q-MAS) experiments alleviate the second-order quadrupolar broadening to reveal the structure-building units of nonequivalent aluminum octahedra in the most extensively studied aluminum hydroxides, namely, gibbsite, bayerite, and boehmite. Further, aided by ab initio calculations of the electric field gradient tensors, the 3Q-MAS/MAS results are shown to lead to the assignment of (27)Al isotropic resonances to the aluminum positions in their X-ray-determined structures. The present work paves the way for future studies on various structurally transformed materials derived from these basic aluminum hydroxides.  相似文献   

13.
(51)V solid-state NMR (SSNMR) studies of a series of noninnocent vanadium(V) catechol complexes have been conducted to evaluate the possibility that (51)V NMR observables, quadrupolar and chemical shift anisotropies, and electronic structures of such compounds can be used to characterize these compounds. The vanadium(V) catechol complexes described in these studies have relatively small quadrupolar coupling constants, which cover a surprisingly small range from 3.4 to 4.2 MHz. On the other hand, isotropic (51)V NMR chemical shifts cover a wide range from -200 to 400 ppm in solution and from -219 to 530 ppm in the solid state. A linear correlation of (51)V NMR isotropic solution and solid-state chemical shifts of complexes containing noninnocent ligands is observed. These experimental results provide the information needed for the application of (51)V SSNMR spectroscopy in characterizing the electronic properties of a wide variety of vanadium-containing systems and, in particular, those containing noninnocent ligands and that have chemical shifts outside the populated range of -300 to -700 ppm. The studies presented in this report demonstrate that the small quadrupolar couplings covering a narrow range of values reflect the symmetric electronic charge distribution, which is also similar across these complexes. These quadrupolar interaction parameters alone are not sufficient to capture the rich electronic structure of these complexes. In contrast, the chemical shift anisotropy tensor elements accessible from (51)V SSNMR experiments are a highly sensitive probe of subtle differences in electronic distribution and orbital occupancy in these compounds. Quantum chemical (density functional theory) calculations of NMR parameters for [VO(hshed)(Cat)] yield a (51)V chemical shift anisotropy tensor in reasonable agreement with the experimental results, but surprisingly the calculated quadrupolar coupling constant is significantly greater than the experimental value. The studies demonstrate that substitution of the catechol ligand with electron-donating groups results in an increase in the HOMO-LUMO gap and can be directly followed by an upfield shift for the vanadium catechol complex. In contrast, substitution of the catechol ligand with electron-withdrawing groups results in a decrease in the HOMO-LUMO gap and can directly be followed by a downfield shift for the complex. The vanadium catechol complexes were used in this work because (51)V is a half-integer quadrupolar nucleus whose NMR observables are highly sensitive to the local environment. However, the results are general and could be extended to other redox-active complexes that exhibit coordination chemistry similar to that of the vanadium catechol complexes.  相似文献   

14.
Paramagnetic rare-earth elements have been examined as NMR structural probes in polyoxoanionic solids, which have a variety of applications as luminescent materials that are usually disordered and therefore intractable by traditional structural methods. Thirteen Keggin and Wells-Dawson polyoxotungstates containing substitutions with lanthanides of different effective magnetic moments have been examined by 31P magic angle spinning NMR spectroscopy. The electron-nuclear dipolar interaction dominating the spinning sideband envelopes is determined by the lanthanide's magnetic moment and was found to be a sensitive probe of the nature of the polyoxoanion, of the positional isomerism, and of the ion stoichiometry. Electron-nuclear dipolar anisotropies computed based on the point-dipole approximation are generally in good agreement with the experimental results. The choice of a specific lanthanide as a structural probe can be tailored to the desired distance range between the phosphorus atoms and the paramagnetic centers to be probed. This approach is expected to be particularly useful in the paramagnetic polyoxoanionic materials lacking long-range order.  相似文献   

15.
A series of europium-substituted Wells-Dawson polyoxotungstates were addressed by 31P magic angle spinning (MAS) NMR spectroscopy. The electron-nuclear dipolar interaction dominates the 31P spinning-sideband envelopes. The experimental electron-nuclear dipolar anisotropies were found to be in good agreement with those calculated based on the known crystallographic coordinates and effective magnetic moments and assuming a point-dipole approximation. These electron-nuclear dipolar anisotropies directly report on the anion stoichiometry and on the positional isomerism, indicating that 31P MAS NMR spectroscopy may be a useful and quick analytical probe of the local environment in Wells-Dawson solids containing localized europium paramagnetic centers.  相似文献   

16.
(1)H HRMAS NMR spectroscopy is applied to gain insight into the chemical and morphological structure of double-network (DN) hydrogels, prepared from poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and poly(acrylamide) (PAAm). The method enables one to obtain detailed information at the molecular level about the formation of covalent bonds between the two polymer networks through non-reacted double bonds of the cross-linker N,N'-methylene bis(acrylamide) (MBAA). Evidence to the existence of strong hydrogen-bond interactions based on the N-H group of the PAMPS as a hydrogen-bond donor and the C=O group of the PAAm as a hydrogen-bond acceptor is also provided. These findings clarify the origin of the toughening mechanism and the exceptionally strong mechanical properties of DN gels, further supported by microhardness data.  相似文献   

17.
Three possible high-resolution magic angle spinning (HR MAS) NMR experiments to quantitatively monitor a solid phase supported Horner-Emmons reaction are presented. In the first experiment we follow the solid phase reaction in deuterated solvent directly in the NMR rotor. The second quantification is done by reconditioning of a few milligrams of resin from an undefined reaction vessel by washing, drying, and reswelling in deuterated solvent, and the evaluation of the amount of resin bound structures by comparing to an external standard. The third experiment represents the first analytical quantification of resin-bound structures without any sample preparation, except the transfer of resin-solvent suspension (large excess of reagents in protonated dimethylformamide) from the reaction vessel to the NMR rotor.  相似文献   

18.
Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.  相似文献   

19.
Geometric and electronic environments of vanadium have been addressed by (51)V magic angle spinning NMR spectroscopy of six-coordinated polyoxometalate solids. (C(4)H(9))(4)N(+) and mixed Na(+)/Cs(+) salts of the Lindqvist-type mono- and divanadium-substituted oxotungstates, [VW(5)O(19)](3-) and [V(2)W(4)O(19)](4-), have been prepared as microcrystalline and crystalline solids. The solid-state NMR spectra reflect the details of the local environment of the vanadium site in these hexametalate solids via the anisotropic quadrupolar and chemical shielding interactions. Remarkably, these (51)V fine structure constants in the solid state are dictated by the nature and geometry of the countercations. Electrostatic calculations of the electric field gradients at the vanadium atoms have been performed. Experimental trends are well reproduced with the simple electrostatic model, and explain the sensitivity of the anisotropic NMR parameters to the changes in the cationic environment at the vanadium site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号