首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca0.997Pr0.002TiO3 (CPTO) thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition (ELAMOD) process with a KrF laser at a fluence of 100 mJ/cm2, a pulse duration of 26 ns, and a repetition rate of 20 Hz at 100°C in air. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide (ITO) glasses. The crystallinity of the CPTO films depended on the substrates; the films were well grown on the borosilicate and ITO glasses compared to the silica glass. To elucidate the key factors for the crystallization of the CPTO films in this process, we carried out numerical simulations for the temperature variation at the laser irradiation, using a heat diffusion equation, and compared the experimental data with thermal simulations. According to the results, we have shown that a large optical absorbance of the film and a small thermal conductivity of the substrate provide effective annealing time and temperature for the crystallization of the CPTO films, and polycrystalline intermediate layer which has a large optical absorption such as the ITO also plays a key role for the nucleation of the CPTO crystals in the ELAMOD process.  相似文献   

2.
We propose a new method of optical near-field etching where a nonadiabatic process is applied to a synthetic silica substrate using a continuum wave laser (λ=532 nm) with a Cl2 gas source. Because the absorption band edge energy of Cl2 is higher than the photon energy of the light source, we preclude the conventional adiabatic photochemical reaction. An optical near field, generated on the nanometrically rough substrate, induces the nonadiabatic chemical reaction to the Cl2 molecules and thereby selectively etches away the roughness, leaving an ultra-flat synthetic silica surface with a minimum average surface roughness R a of 1.37 Å.  相似文献   

3.
Silica glass can be machined by irradiation with laser plasma soft X-rays on nano- and micrometer scale. We have investigated the ablation process of silica glass induced by laser plasma soft X-ray irradiation. We observed ionic and neutral species emitted from silica surfaces after irradiation. Dominant ions and neutrals are O+ and Si+ ions and Si, O, SiO and Si2 neutrals, respectively. The ions have kinetic energies of 13 and 25 eV, which are much higher than those of particles emitted by evaporation. The energy of laser plasma soft X-rays absorbed to silica glass at a fluence of 1.4 J/cm2 is estimated to be 380 kJ/cm3, which is higher than the binding energy of SiO2 of 76 kJ/cm3. These results suggest that the most of the bonds in silica glass are broken by absorption of laser plasma soft X-rays, that several percent of the atoms are ionized, and that neutral atoms are emitted together with repulsive ions. The process possibly enables us to fabricate nano structures.  相似文献   

4.
In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO2) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO2@mSiO2), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO2 and AuNFs@SiO2@mSiO2 exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.  相似文献   

5.
We have experimentally investigated the processes of laser light absorption and energy transfer in porous targets made of “agar-agar” (C14H18O7) with an average density of 1–4 mg/cm3 illuminated by the focused beam of a neodymium laser with an intensity of 1014 W/cm2 within a pulse of duration 2.5 ns. Many important scientific and technical problems, e.g., inertial-confinement thermonuclear fusion, the creation of lasers in the x-ray regime, and the modeling of astrophysical phenomena under laboratory conditions, can be successfully addressed by using low-density porous media as components of such targets. In our experiments with porous targets of variable density and thickness we used optical and x-ray diagnostic methods, which ensured that our measurements were made with high temporal and spatial resolution. We show that a region forms within the porous target consisting of a dense high-temperature plasma which effectively absorbs the laser radiation. Energy is transferred from the absorption region to the surrounding layer of porous material at up to 2×107 cm/s. Experimental data are in good agreement with the predictions of our theoretical model, which takes into account the specific features of absorption of laser radiation in a porous material and is based on representing the energy transfer within the material as a hydrothermal wave. Zh. éksp. Teor. Fiz. 111, 903–918 (March 1997)  相似文献   

6.
Starting from the radiation transport equation for homogeneous, refractive lossy media, we derive the corresponding time-dependent multifrequency diffusion equations. Zeroth and first moments of the transport equation couple the energy density, flux and pressure tensor. The system is closed by neglecting the temporal derivative of the flux and replacing the pressure tensor by its diagonal analogue. The radiation equations are coupled to a diffusion equation for the matter temperature. We are interested in modeling heating and cooling of silica (SiO2), at possibly rapid rates. Hence, in contrast to related work, we retain the temporal derivative of the radiation field. We derive boundary conditions at a planar air–silica interface taking account of reflectivities obtained from the Fresnel relations that include absorption. The spectral dimension is discretized into a finite number of intervals leading to a system of multigroup diffusion equations. Three simulations are presented. One models cooling of a silica slab, initially at 2500 K, for 10 s. The other two are 1D and 2D simulations of irradiating silica with a CO2 laser, λ = 10.59 μm. In 2D, a laser beam (Gaussian profile, r0 = 0.5 mm for 1/e decay) shines on a disk (radius = 0.4, thickness = 0.4 cm).  相似文献   

7.
Dumitras  D. C.  Dutu  D. C.  Matei  C.  Cernat  R.  Banita  S.  Patachia  M.  Bratu  A. M.  Petrus  M.  Popa  C. 《Laser Physics》2011,21(4):796-800
Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2–10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.  相似文献   

8.
Summary We describe in this paper a simple interferometric technique which allows a direct and simultaneous determination of energy absorption and of the vibrational-translational relaxation time of polyatomic molecules strongly excited by reasonant, infrared (10.6 μm) laser radiation. In particular, we have applied this method to the study of freon-22 (CF2HCl), a medium-size molecule that, apart from its potential application in13C isotope separation, shows interesting absorption features in the 10 μm region. The results are also compared with our previous findings in SF6. To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.  相似文献   

9.
We model the steady-state threshold and extracted power of a two-photon incoherently pumped upconversion fibre laser. Our threshold analysis is entirely analytic, and along with this derivation we obtain an analytic threshold cutback formula. This takes a particularly simple form when the ground state pump absorption follows exponential absorption. We also numerically simulate the extracted laser power. The experiment which we simulate is upconversion in Pr3+ doped ZBLAN fibre lasing at 491 nm and pumped with 1017 nm and 835 nm diode lasers. Our formulas and simulations are mutually consistent and agree with the experiment to within 10%.  相似文献   

10.
We have analyzed and numerically simulated our experiments on the compression of DT-gas-filled glass capsules under irradiation by a small number of beams on the Iskra-5 facility (12 beams) at the second harmonic of an iodine laser (λ = 0.66 μm) for a laser pulse energy of 2 kJ and duration of 0.5 ns in the case of asymmetric irradiation and compression. Our simulations include the construction of a target illumination map and a histogram of the target surface illumination distribution; 1D capsule compression simulations based on the DIANA code corresponding to various target surface regions; and 2D compression simulations based on the NUTCY code corresponding to the illumination conditions. We have succeeded in reproducing the shape of the compressed region at the time of maximum compression and the reduction in neutron yield (compared to the 1D simulations) to the experimentally observed values. For the Iskra-5 conditions, we have considered targets that can provide a more symmetric compression and a higher neutron yield.  相似文献   

11.
For CH2+ molecular ions at 5 K we simulate the infrared absorption spectrum, and tabulate all strong absorption lines from 0 to 16 000 cm−1. We use ab initio potential energy, dipole moment, and transition moment surfaces in conjunction with our program system RENNER, which allows for the Renner-Teller effect and spin-orbit coupling in a full-dimensions calculation. This is done for the purpose of guiding our search for the matrix isolation spectrum; our attempts at finding this spectrum are also described.  相似文献   

12.
We have developed a 6–12 μm mid-infrared (MIR) femtosecond laser source for glyco-protein structure analysis. The MIR femtosecond laser pulses are generated by a differential frequency generation (DFG) configuration with a combination of Ti:sapphire based regeneratively amplified femtosecond laser pulses (780 nm, 160 fs, 1 mJ) and a β-BaB2O4 (BBO) based optical parametric amplifier (OPA). The MIR pulse energy exceeds 4.5 μJ, where a glyco-protein molecule has resonant absorption lines due to the vibrational–rotational transitions. The pulse width is estimated to be less than 1 ps according to the cross correlation measurement between the two OPA output pulses. Using the MIR femtosecond laser pulses, we demonstrated photo-dissociation of the sialyl Lewis X (sLeX) proton added ion, which is the first time to the best of our knowledge. PACS 42.65.Re; 42.62.-b; 42.60.-b; 42.65.-k; 87.50  相似文献   

13.
By using mixed crystal Nd:Lu0.15Y0.85VO4 as laser medium, KTP as frequency-doubling crystal, a diode-pumped intracavity-frequency-doubled Q-switched and mode-locked (QML) Nd:Lu0.15Y0.85VO4/KTP green laser with acousto-optic (AO) modulator and central semiconductor saturable absorption mirror (C-SESAM) is realized by using a V-type cavity. The QML laser characteristics such as the pulse width, single-pulse energy, have been measured for different modulation frequencies of the AO modulator. In comparison with the singly passively QML green laser with central SESAM, the doubly QML green laser can generate more stable and shorter pulses with higher peak power. Based on the coupled rate equations for a diode-pumped doubly QML green laser with AO and C-SESAM, in which the saturated absorption mechanism of C-SESAM is considered, the recurrence relation of the relative amplitude of the mode-locking pulses is given and the related numerical simulations are in good agreement with the experimental results.  相似文献   

14.
C60介质反饱和吸收动力学   总被引:6,自引:0,他引:6       下载免费PDF全文
采用速率方程理论研究C60分子实现反饱和吸收的动力学过程,以YAG倍频调Q脉冲激光照射C60甲苯溶液,实验验证了理论模拟的正确性。还分析了分子各能级对反饱和吸收的贡献以及不同激光波长和脉宽对反饱和吸收的影响。 关键词:  相似文献   

15.
《Infrared physics》1993,34(6):629-634
Using controlled feedback and coincident far infrared absorption, we have shown that the superradiant emission process in NH3 pumped by the 9R16 line of a CO2 TEA laser has a marked effect on the absorption of laser energy and vibrational heating of the gas. Since many polyatomic molecules pumped by IR laser are efficient superradiant far infrared sources, the effect is important for laser induced fluorescence studies in these polyatomics.  相似文献   

16.
One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica.In this work,the repaired damage site irradiated by CO 2 laser is simplified to a Gaussian rotation according to the corresponding experimental results.Then,the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface.The simulated results show that the modulation is notable,the E max is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO 2 laser.The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively,which agrees well with the corresponding experimental results.The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively.Meanwhile,the corresponding physical mechanism is analysed theoretically in detail.  相似文献   

17.
The anomalous atmospheric absorption spectra in the window wavelength region of 8–14 um have been suggested due to the water dimer. Based on our laboratory measurements, water continuum CO2 laser absorption spectra and a resonance absorption line due to the weak local water vapor pure rotational transition have been reported. The equilibrium concentration of water dimers in the atmosphere, the electronic binding energy and the theoretical calculations for absorption attenuation have been obtained in agreement with published data.  相似文献   

18.
周宁  张兰芝  李东伟  常峻巍  王毕艺  汤磊  林景全  郝作强 《物理学报》2018,67(17):174205-174205
实验研究了平顶激光光束经微透镜阵列在熔融石英中成丝的演化以及超连续辐射的产生,并进一步与高斯光束的成丝和超连续辐射进行了对比研究.分别对这两种光束的多丝传输进行了横向和纵向成像.结果表明,使用平顶光束可以获得更为均匀的多丝分布,成丝的起点也更为一致;尤其重要的是,相对于高斯光束,平顶光束可以使用更高的入射激光脉冲能量而不会造成介质的损伤,从而可以获得更高脉冲能量和更高转换效率的超连续辐射.  相似文献   

19.
《光谱学快报》2013,46(6):803-811
Spectroscopic investigations for cadmium iodide (CdI2) crystal have been carried out at 80 K under laser excitation. Due to the self-trapped excitons of CdI2, a broad-band stimulated emission spectrum with its peak emission around 520 nm was achieved from the crystal under two-photon pumping by means of ruby laser. The photoluminescence (PL) studies in the crystal show overall nonlinear dependence of the PL peak intensity on input laser energy. The occurrence of slopes about 2 and 3 obtained in the desired energy range of interest for ruby and neodymium laser excitations, respectively, indicate corresponding photon absorption process. The photon absorption coefficients for the processes were calculated.  相似文献   

20.
Multiple laser beams demonstrate many advantages as energy sources in diamond synthesis. In a reported amazingly-fast multiple laser coating technique, CO2 gas is claimed as the sole precursor or secondary precursor for forming a diamond or diamond-like carbon, which remains poorly understood. The absorption coefficient changes under the irradiation of multiple lasers are one of the keys to resolve the mysteries of multiple laser beam coating processes. This study investigates the optical absorption in CO2 gas at the CO2 laser wavelength. The resonance absorption process is modeled as an inverse process of the lasing transitions of CO2 lasers. The well-established CO2 vibrational-rotational energy structures are used as the basis for the calculations with the Boltzmann distribution for equilibrium states and the three-temperature model for non-equilibrium states. Based on the population distribution, our predictions of the CO2 absorption coefficient changes as a function of temperature are in agreement with the published data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号