首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered mesoporous silicas SBA-15 with high loadings of pendant vinyl groups have been synthesized via co-condensation of tetraethoxysilane (TEOS) and triethoxyvinylsilane (TEVS) templated with a triblock copolymer.  相似文献   

2.
A novel copolymer with fluorescence properties in mesoporous silica SBA-15 was prepared via a combination of surface-initiated reversible addition-fragmentation chain transfer(RAFT) polymerization and "click" chemistry.A sufficient amount of peroxide groups were introduced into mesoporous silica SBA-15 channel pores and were further used to initiate the RAFT polymerization of styrene and 4-vinylbenzyl azide,resulting in SBA-15 supported polystyrene-co-poly(4-vinylbenzyl azide) copolymer(PS-co-PVBA/SBA-15) hybrid material.The samples were characterized by Fourier transform infrared spectroscopy(FT-IR),transmission electron microscopy(TEM),thermogravimetry analysis(TGA),N_2 adsorption-desorption isotherms and X-ray diffraction(XRD),respectively.The results show that the styrene and 4-vinylbenzyl azide had copolymerized inside mesoporous silica SBA-15.Subsequently,Npropargyl-carbazole(PC) was connected to PS-co-PVBA/SBA-15 hybrid material via "click" reaction,resulting in PS-co-PVBC/SBA-15 with carbazole side groups hybrid material.The fluorescence spectrum is dominated by a broad band from 350 nm to 400 nm in narrow region and the maximum peak is 362 nm,indicating the characteristic absorption of the carbazole group of PS-co-PVBC/SBA-15 hybrid material.  相似文献   

3.
Fe-SBA-15 materials with different Si/Fe ratios (Si/Fe = 100, 60, 15) have been synthesized by hydrothermal method and characterized by several spectroscopic techniques. Electron spin resonance and Mössbauer spectroscopy, along with electron microscopy and X-ray diffraction, allowed differentiation of several iron species. These species correspond to hematite particles, very small “isolated” or oligomeric FeIII species possibly incorporated in the mesoporous silica wall, and FeIII oxide clusters either isolated or agglomerated, forming “rafts” at the surface of the silica and exhibiting ferromagnetic ordering. Because of their agglomeration, these clusters appear with a two-peak size distribution, with one peak corresponding to the isolated clusters formed in the mesopores and still embedded in them and the other corresponding to the agglomerates spread on the surface of the mesoporous silica particles.  相似文献   

4.
The vibrational properties of mesoporous silica (SBA-15) were investigated by deep ultraviolet (UV) Raman and infrared spectroscopies with and without the presence of platinum nanoparticles in the mesopores that were incorporated by sonication. Raman and IR spectral line assignments were made by comparison to amorphous silicas. This procedure permitted identification of vibrations of longitudinal (LO) and transverse (TO) optical lattice modes, the presence of Si-OH, and vibrational modes associated with the presence of three-, four-, and six-membered siloxane rings. Hydraulic pressing of the mesoporous silica with pressure in the range 3-7 tons cm(-2) destroys the X-ray diffraction pattern and strongly decreases the Raman peak (D2) associated with three-membered rings at the surface. In the presence of platinum nanoparticles in the silica mesopores, a peak attributed to a Pt-O stretching vibration appears at between 530 and 580 cm(-1) in the UV-Raman spectrum, which can be used to monitor the presence of the platinum particles and their interaction with the support. The D2 feature in the UV-Raman spectra also decreases with increasing Pt loading, which is attributed to interactions of the Pt nanoparticles with the silica surface.  相似文献   

5.
The currently available microwave technology permits the development and implementation of a temperature-programmed microwave-assisted synthesis (TPMS) of ordered mesoporous silicas (OMSs). Unlike in previously reported syntheses of OMSs, in which only the final hydrothermal treatment was carried out under microwave irradiation, this work takes advantage of the existing capabilities of modern microwave systems to program the temperature and time for the entire synthesis of these materials. To demonstrate the flexibility of the proposed microwave-assisted synthesis, besides programming two consecutive steps involving initial stirring of the gel at a lower temperature and static hydrothermal treatment at a higher temperature, we explored the possibility of temperature programming of the latter step. A major advantage of microwave technology is the feasibility of temperature and time programming, which has been demonstrated by the synthesis of one of the most popular OMSs, SBA-15, over an unprecedented range of temperatures from 40 to 200 degrees C. Since the synthesis of OMSs has not yet been explored and reported at temperatures exceeding 150 degrees C, this work is focused on the SBA-15 samples prepared at higher temperatures (such as 160, 180, and even 200 degrees C). These SBA-15 samples show better thermal stability than those synthesized at commonly used temperatures either under conventional or microwave conditions. Moreover, a partial decomposition of the template during high-temperature microwave-assisted syntheses does not compromise the formation of well-ordered SBA-15 materials. This study shows that the simplicity and capability of temperature and time programming in TPMS allows one not only to tune the adsorption and structural properties of OMSs but also to easily screen a wide range of conditions in order to optimize and scale-up their preparation as well as to significantly reduce the time of synthesis from days to hours.  相似文献   

6.
Platinum nanoparticles in the size range of 1.7-7.1 nm were produced by alcohol reduction methods. A polymer (poly(vinylpyrrolidone), PVP) was used to stabilize the particles by capping them in aqueous solution. The particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM investigations demonstrate that the particles have a narrow size distribution. Mesoporous SBA-15 silica with 9-nm pores was synthesized by a hydrothermal process and used as a catalyst support. After incorporation into mesoporous SBA-15 silica using low-power sonication, the catalysts were calcined to remove the stabilizing polymer from the nanoparticle surface and reduced by H2. Pt particle sizes determined from selective gas adsorption measurements are larger than those determined by bulk techniques such as XRD and TEM. Room-temperature ethylene hydrogenation was chosen as a model reaction to probe the activity of the Pt/SBA-15 materials. The reaction was shown to be structure insensitive over a series of Pt/SBA-15 materials with particle sizes between 1.7 and 3.6 nm. The hydrogenolysis of ethane on Pt particles from 1.7 to 7.1 nm was weakly structure sensitive with smaller particles demonstrating higher specific activity. Turnover rates for ethane hydrogenolysis increased monotonically with increasing metal dispersion, suggesting that coordinatively unsaturated metal atoms present in small particles are more active for C2H6 hydrogenolysis than the low index planes that dominate in large particles. An explanation for the structure sensitivity is suggested, and the potential applications of these novel supported nanocatalysts for further studies of structure-activity and structure-selectivity relationships are discussed.  相似文献   

7.
A series of WO3/SBA-15 materials with different Si/W ratios have been prepared by impregnating the host material SBA-15 with aqueous ammonium paratungstate solutions. After temperature-programmed carburization (TPC) in flowing CH4/H2 (20/80 v/v mixture), the materials are converted to the corresponding W2C/SBA-15 species. Both the oxide and carbide materials are characterized using X-ray diffraction, nitrogen adsorption-desorption, 29Si NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and TEM measurements. The XRD results show that after impregnation with different amounts of tungsten and subsequent carburization, the materials retain the mesopore structure of SBA-15. The nitrogen adsorption-desorption results indicate that a thin layer of W2C covers the internal walls of SBA-15. Quantitative 29Si single-pulse excitation MAS experiments and FTIR spectroscopy show that the incorporation of W2C in the channels of SBA-15 is correlated with the formation of Si-O-W bonds. Some Si-O-W bonds are transformed into Si-O-H bonds after carburization. The TEM results show that the thickness of the W2C thin layer is 1.7-1.9 nm in W2C/SBA-15. A model involving a discrete W2C thin layer in the channels of SBA-15 is proposed on the basis of the NMR data. The calculated thickness of the discrete W2C thin layer is consistent with value given by HRTEM.  相似文献   

8.
In this study, the mesoporous silica SBA-15 materials containing carboxylic acid groups were used as an effective support to synthesize Cu nanoparticles. Various Cu loading levels from 4% to 13% on SBA-15 catalysts produced an average particle size of 2.8 to 3.1 nm, regardless of the Cu content.  相似文献   

9.
Formation of titanium nitride nanoparticles within mesoporous silica SBA-15   总被引:2,自引:0,他引:2  
We report the first synthesis of titanium nitride (TiN) nanoparticles inside the nanoscale channels of mesoporous silica SBA-15. The TiN precursor, Ti(NMe(2))(4) in toluene, was incorporated into the methyl group-modified channels of the SBA-15 powder. The functionalization of pore surfaces with methyl groups generates hydrophobic surfaces that facilitate impregnation with Ti(NMe(2))(4) and minimizes reactions between the TiN precursor and the hydroxyl groups on the surface of SBA-15. Formation of TiN nanoparticles inside the mesoporous channels of SBA-15 was carried out by subsequent ammonolysis at high temperatures (700-750 degrees C). The final products have been characterized by TEM and EELS images, powder XRD patterns, FTIR spectra, UV-vis absorption spectra, and nitrogen adsorption isotherm measurements to confirm the presence and distribution of TiN nanoparticles in the SBA-15 samples.  相似文献   

10.
11.
We report the first formation of arrays of InN nanorods inside the nanoscale channels of mesoporous silica SBA-15. In(NO3)3 dissolved in methanol was incorporated into SBA-15 powder without prior pore surface functionalization. Formation of InN nanorod arrays was carried out by ammonolysis at 700 degrees C for 8 h. The final products have been characterized by FT-IR spectra, (29)Si MAS NMR spectra, Raman spectra, XRD patterns, TEM images, nitrogen adsorption-desorption isotherm measurements, and optical spectroscopy. The freestanding InN nanorods observed after silica framework removal with HF solution show diameters of 6-7.5 nm and lengths of 25-50 nm. Formation of a trace amount of In2O3 was also verified. The InN nanorods exhibit a broad band centered at around 550-600 nm, and a band gap energy of 1.5 eV was determined. No light absorption in the near-IR region was measured. The nanorods give a weak emission band centered at around 600 nm. These optical properties are believed to be related to the possible incorporation of oxygen during InN nanorod synthesis.  相似文献   

12.
Mesoporous silica SBA-15 has been synthesized and functionalized by one-step synthesis method to widen their various application possibilities. In this study, phenyltrimethoxysilane (PTMS), 3-mercaptopropyltrimethoxysilane (MPTMS) and trimethoxypropylsilane (TMPS) were used as silane precursors for the functionalization, and after treated with HCl solution, their catalytic activities were evaluated in the lactic acid-methanol esterification. The presence of anchoring of functional groups on SBA-15 was proved by XRD, FT-IR, BET surface area and pore size distributions. Good catalytic activity was observed especially for SBA-15-SO(3)H-MPTMS, and the catalytic activity order was determined as follows: SBA-15-SO(3)H-MPTMS>SBA-15-TMPS>SBA-15-PTMS, which is directly associated with the surface area, pore size and pore volume. As compared with homogeneous catalyst, SBA-15-SO(3)H-MPTMS heterogeneous catalyst shows remarkable performance, such as separation, recovery and reusability.  相似文献   

13.
This in vitro study reports on the enhanced release of the hydrophobic drug itraconazole from the ordered mesoporous SBA-15 silica material and on the existence of a critical mesopore diameter for enhancing release.  相似文献   

14.
15.
Plugged mesoporous SBA-15 having a 2-D hexagonal pore structure could be directly synthesized under acidic conditions using P123 as a supramolecular template, sodium metasilicate and alcoholamines. The use of alcoholamines seemed to play roles as capturing agents for silica sources that could form internal porous plugs.  相似文献   

16.
Adsorption of C7 hydrocarbons on biporous SBA-15 mesoporous silica   总被引:1,自引:0,他引:1  
In our recent studies (Vinh-Thang, H.; Huang, Q.; Eic, M.; Trong-On, D.; Kaliaguine, S. Langmuir 2005, 21, 2051-2057; Vinh-Thang, H.; Huang, Q.; Eic, M.; Trong-On, D.; Kaliaguine, S. Stud. Surf. Sci. Catal. 2005, in press), a series of synthesized SBA-15 materials were characterized using nitrogen adsorption/desorption isotherms at 77 K and SEM images. In the present paper, four of them (MMS-1-RT, MMS-1-60, MMS-1-80, and MMS-5-80) were further investigated with regard to their equilibrium characteristics using n-heptane and toluene as sorbates by the standard gravimetric technique. SBA-15 materials proved to have a broad pore size distribution within the micropore/small-mesopore range in the walls of their main mesoporous channels. The adsorption capacities for toluene were found to be higher than for n-heptane. The isosteric heats of adsorption, estimated by the Clausius-Clapeyron equation, are also higher for toluene compared to n-heptane. They were found to depend on framework microporosity of the relevant SBA-15 samples. The isosteric heats of adsorption for all sorbates decrease with increased loading and approach the heats of evaporation of the respective sorbate. The adsorption capacities of SBA-15 samples are significantly higher than those of silicalite, i.e., the MFI zeolite silica analogue. In contrast to that, the isosteric heats of adsorption in the mesopore channels of SBA-15 were found to be much smaller. This result also suggests that SBA-15 can potentially be a good candidate for separation of C(7) hydrocarbons.  相似文献   

17.
Sun LB  Kou JH  Chun Y  Yang J  Gu FN  Wang Y  Zhu JH  Zou ZG 《Inorganic chemistry》2008,47(10):4199-4208
Direct generation of superbasicity on mesoporous silica SBA-15 was realized by tailoring the host-guest interaction, and calcium species were selected as the guest in modifying SBA-15. The results show that calcium species could be homogeneously distributed on the surface of SBA-15. Because of the host-guest interaction, the decomposition of the supported calcium nitrate was apparently easier than the bulk one. Surprisingly, the calcium nitrates modified SBA-15 (CaNS) samples exhibited superbasicity with good preservation of the mesostructure after activation, differing from the potassium nitrate loaded SBA-15 samples that displayed weak basicity with collapsed mesostructure. The present superbasic CaNS materials also possess good water resistance and high surface areas, up to 429 m(2) g(-1), which is promising for their potential applications in adsorption and catalysis. Further investigation concerning the roles played by the guest in basicity formation on SBA-15 was conducted. The samples modified by Group 2 metal nitrates showed strong basicity with base strength (H-) of 22.5-27.0 and good preservation of mesostructure. In contrast, loading Group 1 metal nitrates on SBA-15 produced samples with weak basicity ( H-=9.3-15.0) and collapsed mesostructure after activation. Such differences can be related to the interaction between the resulting metal oxide and the silica support, as well as the mobility of the cations in the metal oxide.  相似文献   

18.
In this work a sample of SBA-15 mesoporous silica was synthesized and characterized by TEM, XRD, and N2 adsorption. The sample had a high value of specific surface area (1007 m2 g(-1)) and total pore volume (2.1 cm3 g(-1)). The pore diameter was 67 angstroms, so it was large enough to accommodate protein molecules inside the channels. Immobilization by physical adsorption of a commercial lipase preparation from Mucor javanicus was performed at different pH values (pH 5-8). pH 6 gave the highest lipase loading and hydrolytic activity of the corresponding biocatalyst. Chemical modification of the SBA-15 via glutardialdehyde allowed also the enzyme immobilization through chemical adsorption. This preparation was active toward tributyrin hydrolysis. On the contrary, very low activity toward triolein hydrolysis was observed. The reduction of the size of the channels due the immobilization process has been suggested as a possible explanation.  相似文献   

19.
Amino-functionalized SBA-15 type mesoporous silicas having unique hexagonal platelet morphologies with short channels (100-300 nm) running parallel to the thickness of the nanostructured hexagonal platelet type morphologies have been directly synthesized by co-condensation of aminopropyltriethoxysilane (APTES) and sodium metasilicate as a silica source in the presence of Pluronic P123 triblock copolymer as a structure directing agent.  相似文献   

20.
Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号