首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A search for νμ → νe oscillations has been conducted at the Los Alamos Meson Physics Facility (LAMPF) using νμ from π+ decay in flight. An excess in the number of beam-related events from the νe Ce X inclusive reaction is observed. The excess is too large to be explained by normal νe contamination in the beam at a confidence level greater than 99%. If interpreted as an oscillation signal, the observed oscillation probability of (2.6 ± 1.3 ± 0.5) × 10−3 is consistent with the previously reported oscillation evidence from LSND.  相似文献   

2.
The MiniBooNE experiment, a short baseline neutrino oscillation experiment currently running at Fermilab, has observed an unexplained excess of νe-like events at energies between 200 MeV and 475 MeV. Those results and the results of the LSND excess events in are compared to a non-standard oscillation pattern that involves three active and two sterile neutrinos. Some future possibilities for short future baseline programs are also discussed.  相似文献   

3.
Employing an 800 MeV, high-intensity proton beam, the LSND experiment performed a sensitive search for neutrino oscillations and obtained evidence for flavor change. Although the KARMEN experiment observed no such evidence, a joint analysis of the two experiments shows that the data sets are compatible with neutrino oscillations occurring either in a band from 0.2 to 1 eV 2 or in a region around 7 eV 2. The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for neutrino oscillations [C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995); 77, 3082 (1996); 81, 1774 (1998); A. Aguilar et al., Phys. Rev. D 64, 112007 (2001)]. The MiniBooNE oscillation result in neutrino mode [A. Aguilar-Arevalo et al., Phys. Rev. Lett. 98, 231801 (2007); A. Aguilar-Arevalo et al. arXiv:0812.2243] shows no significant excess of events at higher energies (), although a sizeable excess is observed at lower energies (). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2−ν oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos and whether the excess is related to the LSND signal. If the excess is consistent with being due to sterile neutrinos or other new physics, then future experiments at FNAL (MicroBooNE & BooNE) or ORNL (OscSNS) or with the Low-Energy Neutrino Spectrometer (LENS) detector could confirm their existence.  相似文献   

4.
Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of mν < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments.  相似文献   

5.
Our collaboration has installed a long baseline neutrino oscillation experiment at the Palo Verde Nuclear Generating Station in Arizona. 12 tons of Gd loaded liquid scintillator, in a segmented detector, are used to search for oscillations at 740 m distance to three reactors. The anti-neutrino capture on the proton serves as detection reaction. The experiment is expected to reach a sensitivity of Δm2 > 1.3 · 10−3 eV2 and sin22Θ > 0.1. Our range of sensitivity is tuned to test the νμ ↔ νe solution of the atmospheric neutrino anomaly.  相似文献   

6.
Implications of a simple model for the mass generation of leptons are studied, in particular for the upcoming long-baseline neutrino experiments. The flavour mixing angles are large (nearly maximal). The probability for the long-baseline νμ↔νe oscillation is predicted to be about 1%.  相似文献   

7.
The results of Soudan-2 and MACRO experiments are summarized. Both experiments observe atmospheric neutrino anomalies in agreement with νμ → ντ oscillations with maximum mixing. The νμ → νs oscillations are disfavoured by the MACRO experiment at 98% C.L.  相似文献   

8.
We investigate non-standard neutrino interactions (NSIs) in the Zee–Babu model. The size of NSIs predicted by this model is obtained from a full scan over the parameter space, taking into account constraints from low-energy experiments such as searches for lepton flavor violation (LFV) and the requirement to obtain a viable neutrino mass matrix. The dependence on the scale of new physics as well as on the type of the neutrino mass hierarchy is discussed. We find that NSIs at the source of a future neutrino factory may be at an observable level in the νeντ and/or νμντ channels. In particular, if the doubly charged scalar of the model has a mass in reach of the LHC and if the neutrino mass hierarchy is inverted, a highly predictive scenario is obtained with observable signals at the LHC, in upcoming neutrino oscillation experiments, in LFV processes, and for NSIs at a neutrino factory.  相似文献   

9.
The neutrino experiment KARMEN is situated at the beam stop neutrino source ISIS which provides νμ's, νe's and from the π+−μ+-decay at rest. The oscillation channels νμ → νe and are investigated with a 56 t liquid scintillation calorimeter. No evidence for oscillations could be found with KARMEN, resulting in 90% CL exclusion limits of sin2(2Θ) < 8.5 · 10−3 ( ) and sin2(2Θ) < 4.0 · 10−2μ → νe) for Δm2 > 100 eV2. In 1996, the experiment has been upgraded by an additional veto counting system with a total coverage of 300 m2. The new system allows the identification of cosmic muons in the vicinity of the detector. Vetoing these muons suppresses energetic neutrons from deep inelastic scattering of muons as well as from μ-capture by a factor of 40. Up to 1996, these neutrons represented the main background for oscillation search. The experimental sensitivity for will be significantly enhanced towards sin2(2Θ) 1.0 · 10−3 after a further measuring period of 2–3 years.  相似文献   

10.
The LSND Collaboration reported a 3.8σ excess of $\bar v_e $ over background. In this experiment 800MeV protons were dumped into a water target. LSND experimentalists interpreted this excess as evidence for $\bar v_\mu \to \bar v_e $ oscillations, which led to the hypothesis of the existence of ‘sterile’ neutrinos. LSND’s claim was not confirmed by the MiniBooNE Collaboration, so the origins of the LSND result were never clarified. The data from the HARP-CDP group on pion production by 800 MeV protons are used in an independent calculation of LSND’s $\bar v_e $ background. The pion production by neutrons which had been ignored in LSND’s calculations is also taken into account. We conclude that LSND’s claim of a 3.8 σ excess cannot be upheld.  相似文献   

11.
We point out that neutrino events observed at Kamiokande and IMB from SN1987A disfavor the neutrino oscillation parameters preferred by the LSND experiment. For Δm2>0 (the light side), the electron neutrinos from the neutronization burst would be lost, while the first event at Kamiokande is quite likely to be due to an electron neutrino. For Δm2<0 (the dark side), the average energy of the dominantly events is already lower than the theoretical expectations, which would get aggravated by a complete conversion from to  . If taken seriously, the LSND data are disfavored independent of the existence of a sterile neutrino. A possible remedy is CPT violation, which allows different mass spectra for neutrinos and anti-neutrinos and hence can accommodate atmospheric, solar and LSND data without a sterile neutrino. If this is the case, Mini-BooNE must run in rather than the planned ν mode to test the LSND signal. We speculate on a possible origin of CPT violation.  相似文献   

12.
Expected sensitivity of future atmospheric neutrino data from Super-Kamiokande on neutrino oscillation physics is discussed. We expect that the accuracy of the sin 2θ23 measurement will be improved with (exposure time) . By analyzing high energy fully contained events, it could be possible to statistically demonstrate the existence of charged current ντ interactions at the 3 standard deviation level with a few more years of data. Subdominant νμ → νe oscillations could be observed if θ13 is near the present limit. However, significantly more data will be required to observe a 3 standard deviation effect.  相似文献   

13.
The CHORUS experiment is designed to search for νμ → ντ oscillation with a hybrid detector system containing 800 kg nuclear emulsions as target and vertex detector. Run I (320 000 recorded νμCC in 1994/5) and more than half of the run II (460 000 νμCC in 1996/7) data taking have been successfully completed. Approximately 80 000 events have been analyzed so far, searching for and τh (nπ0) ντ decays. No candidate has been found, leading to a limit sin2μτ ≤ 4.5 10−3 for large Δm2.  相似文献   

14.
Thomas Schwetz 《Pramana》2009,72(1):119-129
The status of neutrino oscillations from global data is summarized, with the focus on the three-flavour picture. The status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results is also discussed. Furthermore, an outlook on the measurement of the mixing angle ϑ 13 in the near term future, as well as prospects to discover CP violation in neutrino oscillations and to determine the type of the neutrino mass ordering by long-baseline experiments in the long term future are given.   相似文献   

15.
P. Kasper 《Pramana》2004,62(3):611-614
Recent discoveries in the neutrino sector have opened a new frontier in highenergy physics and cosmology. Evidence from neutrino oscillation experiments from around the world indicate that neutrinos oscillate between their different flavours and therefore may have mass. In addition, results from solar and atmospheric neutrino experiments as well as the accelerator neutrino experiment, LSND, cannot all be explained with the three standard model neutrinos. Is this new physics or is there some other explanation? The MiniBooNE experiment presently taking data at Fermilab is designed to address the LSND signal and answer this question. Progress on the MiniBooNE experiment will be presented and prospects for the future will be discussed.  相似文献   

16.
The Liquid Argon imaging technique, as proposed for the ICARUS detector, offers the possibility to perform complementary and simultaneous measurements of neutrinos, as those of CERN to Gran Sasso beam (CNGS) and those from cosmic ray events. For the currently allowed values of the Super—Kamiokande results, the combination of both CNGS and atmospheric data will provide a precise determination of the oscillation parameters. Since one can observe and unambiguously identify νe, νμ and ντ components, this technology allows to explore the full (3 x 3) mixing matrix. The same class of detector can be proposed for high precision measurements at a neutrino factory.  相似文献   

17.
The infrared spectrum of allene has been recorded with high resolution (0.002-0.004 cm−1) on a Fourier transform instrument in the region 730 to 1170 cm−1 containing the perpendicular bands, ν9 and ν10. A total of 21 subbands with KΔK ranging from −6 to +14 have been assigned in the ν9 band, and 26 subbands with KΔK = −10 to +15 have been assigned in the ν10 band. The bands are affected by a combination of a Jz-Coriolis and a quartic anharmonic interaction between their upper states ν9 and ν10. In addition, several other more localized perturbations are found in the spectrum. The nature of the interactions responsible for these perturbations is discussed, and five of the strongest perturbations are quantitatively accounted for by constructing a Hamiltonian matrix which includes five different perturbing states and their Coriolis and anharmonic resonances with the ν9 and ν10 upper states. A set of spectroscopic constants for the ν9 and ν10 states and for some of the perturbing states is reported.  相似文献   

18.
The infrared spectrum of doubly deuterated methane CH2D2has been recorded in the region from 1900 to 2400 cm−1at almost Doppler-limited resolution by using two high-resolution Fourier transform spectrometers. The vibrational bands observed include 2ν4, ν4+ ν7, 2ν7, ν2, ν8, ν4+ ν9, and ν7+ ν9, which were analyzed by taking into account Coriolis and Fermi interactions among them and also those with ν4+ ν5, ν3+ ν7, and ν5+ ν7. Most of the centrifugal distortion constants were constrained to appropriate values, while the vibrational term value and three rotational constants in each of the seven excited states were adjusted along with Coriolis and Fermi interaction parameters by the least-squares analysis of the observed spectrum. The vibration–rotation interaction constants αsthus determined for the ν2and ν8states were combined with those of other fundamental states already published to calculate the equilibrium C–H distance.  相似文献   

19.
The vibration-rotation spectrum of methyl isocyanide (CH3NC) has been recorded with the aid of a high-resolution Fourier transform spectrometer in the region 1370 to 1560 cm−1 containing the perpendicular band of the fundamental vibration ν6 (species E), the weaker parallel band of the ν3 (A1) fundamental, and the perpendicular combination band ν7 + ν8 (E) enhanced by Fermi resonance with ν6. Sixteen hundred seventy well-resolved lines were assigned to 15 subbands of ν6, 6 subbands of ν3, and 3 subbands of ν7 + ν8. A strong x, y-Coriolis resonance between ν3 and ν6 and Fermi resonance between ν±6 and the E component ν7 + ν8, as well as between ν3 and the A1,2 components ν±7 + ν8, greatly affects the spectrum. Additional weaker anharmonic interaction of ν6 with the ν4 + 2ν28 combination and higher-order rotational interactions connecting the various states were also detected in the spectrum. All of these interactions have been incorporated into a 9 × 9 Hamiltonian matrix used for modeling the upper states of the observed transitions. A set of spectroscopic constants is reported for the upper states of the bands ν3, ν6, and ν7 + ν8 and for ν4 + 2ν28 which reproduces the observed lines with an overall standard deviation of 0.0012 cm−1.  相似文献   

20.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号