首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The effect of adsorbed S at different coverages on the adhesion of Fe(110) surfaces in match and mismatch is examined using density functional theory (DFT). S is adsorbed in atop, bridge, and 4-fold hollow sites on one side of the interface in c(2 x 2) and p(1 x 1) arrangements, corresponding to coverages of 1/2 and 1 monolayer, respectively. The calculated adhesion energy values at different interfacial separations are fitted to the universal binding energy relation, and the effect of the S coverages on the adhesive strength is analyzed. The effect of relaxation of the interfaces at equilibrium is also investigated, and the resulting interfacial structures and related magnetic and charge density properties are compared.  相似文献   

2.
First-principles calculations based on density functional theory-generalized gradient approximation method have been performed on cesium adsorption on Si(001)(2 x 1) surface. The optimized geometries and adsorption energies have been obtained and the preferred binding sites have been determined for the coverage (Theta) of one monolayer and half a monolayer. At Theta = 0.5 ML the most stable adsorption site is shown to be T3 site. At Theta = 1 ML two Cs atoms are adsorbed at HH and T3 sites, respectively. It was found that the saturation coverage of Cs for the Si(001)(2 x 1)-Cs surface is one monolayer instead of half a monolayer. This finding supports the majority of experimental observations but does not support recent coaxial impact collision ion scattering spectroscopy investigations [Surf. Sci. 531, L340 (2003)] and He(+) Rutherford backscattering spectroscopy studies [Phys. Rev. B 62, 4545 (2000)]. Mulliken charge and overlap population analysis showed that the Cs-Si bond is indeed ionic rather than polarized covalent as generally assumed for alkali metal (AM) on Si(001)(2 x 1) surface. Geometrical structure analysis seems to have limitations in determining the nature of AM-substrate bond. We also found that the silicon surface is metallic and semiconducting for the coverages of 0.5 and 1 ML, respectively.  相似文献   

3.
Atomic oxygen adsorption on the Mo(112) surface has been investigated by means of first-principles total energy calculations. Among the variety of possible adsorption sites it was found that the bridge sites between two Mo atoms of the topmost row are favored for O adsorption at low and medium coverages. At about one monolayer coverage oxygen atoms prefer to adsorb in a quasithreefold hollow sites coordinated by two first-layer Mo atoms and one second layer atom. The stability of a structural model for an oxygen-induced p(2 x 3) reconstruction of the missing-row type is examined.  相似文献   

4.
Using density functional theory calculations, we compare the relative stabilities and properties of different arrangements of S on Fe(110) at a 1/3 monolayer coverage, including two observed experimentally. For all studied arrangements, S is adsorbed in the three high-symmetry adsorption sites: 4-fold hollow, 3-fold hollow, bridge, and atop sites. The binding energy, work function change, adsorption geometry, charge density distribution, magnetic properties, and density of states are determined and compared. The most stable overlayer arrangement corresponds to the overlayer seen by experiment after dissociative adsorption of H2S and has S adsorbed in 4-fold hollow sites. In the other arrangements, the S atoms are located closer to each other on the surface reducing the stability of the overlayer. S causes a minor adsorbate-induced reconstruction of the Fe surface and quenches the magnetic moment of the Fe atoms it bonds to directly. It adsorbs as an electropositive species, causing a positive work function change and forms polar covalent bonds to the surface.  相似文献   

5.
采用第一性原理的密度泛函理论研究单个氢原子和多个氢原子在Be(0001)表面吸附性质.给出了氢吸附Be(0001)薄膜表面的原子结构、吸附能、饱和度、功函数、偶极修正等特性参数.同时也讨论了相关吸附性质与氢原子覆盖度(0.06-1.33ML)的关系.计算结果表明:氢原子的吸附位置与覆盖度之间有强烈的依赖关系,覆盖度低于0.67ML时,氢原子能量上易于占据fcc或hcp的中空位置;覆盖度为0.78ML时,中空位与桥位为氢原子的最佳吸附位;覆盖度在0.89到1.00ML时,桥位是氢原子吸附能量最有利的位置;以上覆盖度中Be(0001)表面最外层铍原子的结构均没有发生明显变化.当覆盖度为1.11-1.33ML,高覆盖度下Be(0001)表面的最外层铍原子部分发生膨胀,近邻氢原子渗入到铍表面次层,氢原子易于占据在hcp和桥位.吸附结构中的氢原子比氢分子中的原子稳定.当覆盖度大1.33ML时,计算结果没有发现相对于氢分子更稳定的吸氢结构.同时从分析偶极修正和氢原子吸附垂直高度随覆盖度的变化关系判断氢覆盖度为1.33ML时,在Be(0001)表面吸附达到饱和.  相似文献   

6.
Cytosine was adsorbed onto a Cu(110) surface under UHV conditions. Annealing to 370 K resulted in the formation of a (6 x 6)gg low energy electron diffraction (LEED) pattern, even at submonolayer coverages. Examination of this structure with scanning tunneling microscopy (STM) revealed islands of zigzag chains at low coverages and large ordered domains at monolayer saturation. Further annealing to 480 K initiated a phase transition to a (6 x 2)gg structure observed both by LEED and STM. High resolution electron energy loss spectroscopy spectra for both overlayer structures exhibited mainly in-plane modes suggesting upright/tilted species on the surface. Based on the experimental data and supported by density functional theory calculations, a model is proposed for the (6 x 2)gg structure, which involves the formation of deprotonated hydrogen bridge-bonded cytosine dimers, adsorbed through the oxygen atoms.  相似文献   

7.
用密度泛函理论的总能计算研究了金属铜(100)面的表面原子结构以及在不同覆盖度时氢原子的吸附状态. 研究结果表明, 在Cu(100)c(2×2)/H表面体系中, 氢原子吸附的位置是在空洞位置, 距最外层Cu原子层的距离为0.052 nm, 相应的Cu—H键长为0.189 nm, 并通过计算结构参数优化否定了其它的吸附位置模型. 总能计算得出Cu(100)c(2×2)/H表面的功函数为4.47 eV, 氢原子在这一体系的吸附能为2.37 eV(以孤立氢原子为能量参考点). 通过与衬底原子的杂化, 氢原子形成了具有二维特征的氢能带结构, 在费米能级以下约0.8 eV处出现的表面局域态是Cu(S)-H-Cu(S-1)型杂化的结果. 采用Cu(100)表面p(1×1)、p(2×2)和p(3×3)的三种氢吸附结构分别模拟1, 1/4, 1/9的原子单层覆盖度, 计算结果表明, 随着覆盖度的增加, 被吸附的氢原子之间的距离变短, 使得它们之间的静电排斥和静电能增大, 从而导致表面吸附能和吸附H原子与最外层Cu原子间垂直距离(ZH-Cu)逐渐减小. 在较低的覆盖度下, 氢原子对Cu(100)表面的影响主要表现为单个原子吸附作用的形式. 通过总能计算还排除了Cu(100)表面(根号2×2根号2)R45°-2H缺列再构吸附模型的可能性.  相似文献   

8.
Adsorption of NO on Pt(110)-(1 x 2) and (1 x 1) surfaces has been investigated by density functional theory (DFT) method (periodic DMol(3)) with full geometry optimization and without symmetry restriction. Adsorption energies, structures, and N-O stretching vibrational frequencies of NO are studied by considering multiple possible adsorption sites and comparing with the experimental data. Adsorption is strongly dependent on both coverage and surface phase. The assignment of adsorption sites has been carried out with precise calculation of vibrational frequencies for NO on various sites. We clearly show the NO site switching on both of the surfaces as found in the experiments: at low coverages, bridge species is formed on the surface, and at high coverages, NO switches to atop sites.  相似文献   

9.
We have used primarily temperature-programmed desorption (TPD) and infrared reflection-absorption spectroscopy (IRAS) to investigate CO adsorption on a Au(211) stepped single-crystal surface. The Au(211) surface can be described as a step-terrace structure consisting of three-atom-wide terraces of (111) orientation and a monatomic step with a (100) orientation, or 3(111) x (100) in microfacet notation. CO was only weakly adsorbed but was more strongly bound at step sites (12 kcal mol(-1)) than at terrace sites (6.5-9 kcal mol(-1)). The sticking coefficient of CO on the Au(211) surface was also higher ( approximately 5x) during occupation of step sites compared to populating terrace sites at higher coverages. The nu(CO) stretching band energy in IRAS spectra indicated that CO was adsorbed at atop sites at all coverages and conditions. A small red shift of nu(CO) from 2126 to 2112 cm(-1) occurred with increasing CO coverage on the surface. We conclude that the presence of these particular step sites at the Au(211) surface imparts stronger CO bonding and a higher reactivity than on the flat Au(111) surface, but these changes are not remarkable compared to chemistry on other more reactive crystal planes or other stepped Au surfaces. Thus, it is unlikely that the presence or absence of this particular crystal plane alone at the surface of supported Au nanoparticles has much to do with the remarkable properties of highly active Au catalysts.  相似文献   

10.
Open-circuit potential transients are measured under the conditions of methanol interaction with the pre-adsorbed oxygen at platinized platinum electrode. The time necessary for complete removal of the adsorbed oxygen monolayer appeared being shorter by a factor of ~1.5 as compared with smooth polycrystalline platinum. The dependence of platinum surface coverage with adsorbed oxygen on the potential during its decay is found. It was shown that the reaction of methanol with the adsorbed oxygen is most slow at a high coverage (1–0.8). It is suggested that at these coverages, like the case of polycrystalline platinum, the adsorbed oxygen directly interacts with the methanol molecules from the solution. At moderate coverages (0.8–0.2), the reaction of the adsorbed oxygen with methanol at the platinized platinum is better described by the “conjugated reactions” mechanism. The specific rates of the methanol dissociative adsorption at the platinized platinum turned out to be close to those observed earlier for the polycrystalline platinum.  相似文献   

11.
Individual Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2 molecules, commonly known as N3, adsorbed on a TiO2 surface were visualized with a scanning tunneling microscope (STM) operated in ultrahigh vacuum. A TiO2(110)-(1 x 1) crystal was taken out from the vacuum vessel and immersed into an acetonitrile solution of N3. A monolayer of pivalate ((CH3)3CCOO-) ions was used to protect the (1 x 1) surface from contamination during the wetting process of the N3 adsorption. The N3 molecules adsorbed on the flat terraces protruded by 0.65 nm from the pivalate monolayer. The image height difference of the admolecules could be understood with the assumption that the N3 molecules anchor to the TiO2 surface via two carboxyl groups. The number density of the N3 molecules on the steps was higher than that on the terraces. The poorly coordinated Ti atoms exposed at the step edges form preferential sites where the carboxyl groups can approach, due to a lower steric obstacle or because the structure of the adsorbed N3 molecules suffers less distortion.  相似文献   

12.
We report the first scanning tunneling microscope (STM) investigation, combined with density functional theory calculations, to resolve controversy regarding the bonding and structure of chlorine adsorbed on Au(111). STM experiments are carried out at 120 K to overcome instability caused by mobile species upon chlorine adsorption at room temperature. Chlorine adsorption initially lifts the herringbone reconstruction. At low coverages (<0.33 ML), chlorine binds to the top of Au(111)-(1 x 1) surface and leads to formation of an overlayer with (square root(3) x square root(3))R30 degree structure at 0.33 ML. At higher coverages, packing chlorine into an overlayer structure is no longer favored. Gold atoms incorporate into a complex superlattice of a Au-Cl surface compound.  相似文献   

13.
Both associative and dissociative H(2)O adsorption on SnO(2)(110), TiO(2)(110), and Ti-enriched Sn(1-x)Ti(x)O(2)(110) surfaces have been investigated at low ((1)/(12) monolayer (ML)) and high coverage (1 ML) by density functional theory calculations using the Gaussian and plane waves formalism. The use of a large supercell allowed the simulation at low symmetry levels. On SnO(2)(110), dissociative adsorption was favored at all coverages and was accompanied by stable associative H(2)O configurations. Increasing the coverage from (1)/(12) to 1 ML stabilized the (associatively or dissociatively) adsorbed H(2)O on SnO(2)(110) because of the formation of intermolecular H bonds. In contrast, on TiO(2)(110), the adsorption of isolated H(2)O groups ((1)/(12) ML) was more stable than at high coverage, and the favored adsorption changed from dissociative to associative with increasing coverage. For dissociative H(2)O adsorption on Ti-enriched Sn(1-x)Ti(x)O(2)(110) surfaces with Ti atoms preferably located on 6-fold-coordinated surface sites, the analysis of the Wannier centers showed a polarization of electrons surrounding bridging O atoms that were bound simultaneously to 6-fold-coordinated Sn and Ti surface atoms. This polarization suggested the formation of an additional bond between the 6-fold-coordinated Ti(6c) and bridging O atoms that had to be broken upon H(2)O adsorption. As a result, the H(2)O adsorption energy initially decreased, with increasing surface Ti content reaching a minimum at 25% Ti for (1)/(12) ML. This behavior was even more accentuated at high H(2)O coverage (1 ML) with the adsorption energy decreasing rapidly from 145.2 to 101.6 kJ/mol with the surface Ti content increasing from 0 to 33%. A global minimum of binding energies at both low and high coverage was found between 25 and 33% surface Ti content, which may explain the minimal cross-sensitivity to humidity previously reported for Sn(1-x)Ti(x)O(2) gas sensors. Above 12.5% surface Ti content, the binding energy decreased with increasing coverage, suggesting that the partial desorption of H(2)O is facilitated at a high fractional coverage.  相似文献   

14.
This paper presents the first molecular level investigation of chemical reactivity of a surface of an amorphous diffusion barrier film deposited on a Si(100)-2 x 1 single crystal. Vinyltrimethylsilane (VTMS) is chosen as a probe molecule because of its chemical properties and because of its role as a ligand in a common copper deposition precursor, hexafluoroacetylacetonato-copper-vinyltrimethylsilane, (hfac)Cu(VTMS). The surface chemistry of vinyltrimethylsilane on titanium carbonitride-covered Si(100)-2 x 1 has been investigated using multiple internal reflection Fourier transform infrared spectroscopy (MIR-FTIR), Auger electron spectroscopy (AES), thermal desorption mass spectrometry, and computational analysis. On a film with nominal surface stoichiometry TiC(x)N(y) (x approximately y approximately 1) preannealed to 800 K, VTMS adsorbs molecularly at cryogenic temperatures even at submonolayer coverages; the major pathway for its temperature-programmed evolution is desorption. Adsorption at room temperature leads to chemisorption via a double-bond attachment. A set of computational models was designed to investigate the possible adsorption sites for a VTMS molecule on a TiCN-covered Si(100)-2 x 1 surface. A comparison of the computational predictions for a variety of possible adsorption sites with the results of thermal desorption and infrared measurements suggests that approximately 90% of the adsorbed VTMS is chemisorbed along the Ti-C bond while approximately 10% is chemisorbed on a Ti corner atom, the minority site of the surface. The Ti-N bond is not participating in the chemisorption process.  相似文献   

15.
Spin-polarized density functional theory calculations have been performed to characterize the hydrogen adsorption and diffusion on the Fe(111) surface at 2/3-, 1-, and 2-monolayer (ML) coverages. It is found that the most favored adsorption site for atomic hydrogen (H) is the top-shallow bridge site (tsb), followed by the quasi 4-fold site (qff) with the energy difference of about 0.1 eV, while the top site (t) is not competitive. Furthermore, the adsorbed atomic hydrogen (H) has a high mobility, as indicated by the small diffusion barriers. The local density of state (LDOS) analysis reveals that the Fe-H (tsb or qff) bond involves mainly the Fe 4s and 4p and H 1s orbitals with less contribution of the Fe 3d orbital, while the Fe 4s, 4p, and 3d orbitals all participate in the Fe-H (top) bond. In addition, the coverage effects on the adsorption configurations and adsorption energies are addressed.  相似文献   

16.
Static and dynamic density functional calculations have been used to study the structure and energetics of water adsorbed on the main cleavage plane of ZnO. In the single molecule limit we find that molecular adsorption is strongly preferred. The water binding energy increases for higher coverages due to an almost isotropic attractive water-water interaction which leads to clustering and formation of monolayer islands in the low water coverage regime. A thermodynamic analysis further shows that the full water monolayer is clearly the most stable phase until water starts to desorb. The water monolayer is even more stabilized by a partial dissociation of the water molecules, yielding as most stable configuration a (2x1) superstructure where every second water molecule is cleaved. The dissociation barrier for this process is very small which allows for an auto-dissociation of the water molecules even at low temperatures as observed experimentally. Finally we find that the energy cost involved to form [1210]-oriented domain boundaries between (2x1) patches with different orientation is almost negligible which explains the abundance of such domain boundaries in STM images.  相似文献   

17.
Recent combined experimental and theoretical studies (Beck et al., Phys. Rev. Lett. 2004, 93, 036104) have provided evidence for Ti=O double-bonded titanyl groups on the reconstructed rutile TiO(2)(011)-(2 x 1) surface. The adsorption of water on the same surface is now investigated to further probe the properties of these groups, as well as to confirm their existence. Ultraviolet photoemission experiments show that water is adsorbed in molecular form at a sample temperature of 110 K. At the same time, the presence of a 3sigma state in the photoemission spectra and work function measurements indicate a significant amount of hydroxyls within the first monolayer of water. At room temperature, scanning tunneling microscopy (STM) suggests that dissociated water is present, and about 30% of the surface active sites are hydroxylated. These findings are well explained by total energy density functional theory calculations and Car-Parrinello molecular dynamics simulations for water adsorption on the titanyl model of TiO(2)(011)-(2 x 1). The theoretical results show that a mixed molecular/dissociative layer is the most stable configuration in the monolayer regime at low temperatures, while complete dissociation takes place at 250 K. The arrangement of the protonated mono-coordinated oxygens in the mixed molecular/dissociated layer is consistent with the observed short-range order of the hydroxyls in the STM images.  相似文献   

18.
Relationships between structural parameters of MnO2 and their surface properties at the solid-gas interface were investigated. The studied series ranged from ramsdellite to pyrolusite and encompassed disordered gamma-MnO2 samples. The structural model used takes into account structural defects: Pr (rate of pyrolusite intergrowth in the ramsdellite network) and Tw (rate of microtwinning). Analysis of the N2 adsorption isotherm evidenced positive correlations between specific surface area and Tw for gamma-MnO2 only and between the energetic constant C and (1-Pr). No microporosity is evidenced. Water adsorption isotherms evidenced the dependence of the H2O monolayer volume on Tw and showed a positive correlation between the cross-section area of water molecules adsorbed in the first monolayer and Pr, ranging from 13.5 A2 for Pr=1 to 6.3 A2 for Pr=0.2 (12 sites/nm2). Energetic heterogeneity is quantified from Ar and N2 low-pressure adsorption isotherms with the DIS procedure and correlated with H2O adsorption. High-energy adsorption domains are quantified and assigned to the different crystal faces: (110) faces with a common 1 x 1 octahedra layer of pyrolusite and ramsdellite and the (001) face of ramsdellite with 2 x 2 octahedra on which channels and plateaus are differentiated. The specific surface area ratio of ramsdellite high-energy sites to total ramsdellite content is shown to depend on Tw. The dependence on microtwinning of low cross-sectional area of N2 and much lower cross-sectional of residual H2O molecules leads us to assume that their adsorption sites on grain boundaries are represented by the twin planes between the structured nanocrystals generated by oxygen evolution during MD synthesis.  相似文献   

19.
The adsorption of Suwannee River fulvic acid (SRFA) and Pahokee peat humic acid (PPHA) at the boehmite (gamma-AlOOH)/water interface and the impact of SRFA on boehmite dissolution have been examined over a wide range of solution pH conditions (pH 2-12), SRFA surface coverages (Gamma(SRFA), total SRFA binding site concentration normalized by the boehmite surface area) of 0.0-5.33 micromol m(-2), and PPHA surface coverages (Gamma(PPHA), PPHA binding site concentration normalized by boehmite surface area) of 0.0-4.0 micromol m(-2), using macroscopic adsorption and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. At relatively high SRFA surface coverages (Gamma(SRFA) = 5.33 micromol m(-2)), in situ ATR-FTIR spectral features of adsorbed SRFA are very similar to those measured for SRFA in solution at approximately 1-3 pH units higher. At sub-monolayer surface coverages (Gamma(SRFA) = 1.20 and 2.20 micromol m(-2)), several new peaks and enhancements of the intensities of a number of existing peaks are observed. The latter spectral changes arise from several nonorganic extrinsic species (i.e., adsorbed carbonate and water, for alkaline solution conditions), partially protonated SRFA carboxyl functional groups (near-neutral pH conditions), and small quantities of inner-spherically adsorbed SRFA carboxyl groups and/or Al(III)-SRFA complexes (for acidic conditions). The spectra of PPHA adsorbed at boehmite/water interfaces also showed changes generally consistent with our observations for SRFA sorbed on boehmite. These observations confirm that SRFA and PPHA are predominantly adsorbed at the boehmite/water interface in an outer-sphere fashion, with minor inner-sphere adsorption complexes being formed only under quite acidic conditions. They also suggest that the positively charged boehmite/water interface stabilizes SRFA and PPHA carboxyl functional groups against protonation at lower pH. Measurements of the concentration of dissolved Al(III) ions in the absence and presence of SRFA showed that the boehmite dissolution process is clearly inhibited by the adsorption of SRFA, which is consistent with previous observations that outer-spherically adsorbed organic anions inhibit Al-(oxyhydr)oxide dissolution.  相似文献   

20.
The adsorption of carbon monoxide on Rh(111) and on oxygen modified Rh(111) was investigated using thermal desorption spectroscopy, reflection absorption infrared spectroscopy (RAIRS), and density functional theory. The results show that CO adsorbs on Rh(111) in on top sites at low coverages. With increasing coverage hollow sites and bridge sites get occupied according to the RAIRS results. A new vibrational feature at high wave numbers was found in the on top region of the CO stretching frequency. This feature can be explained by a local high density CO structure where two CO molecules are adsorbed in the ( radical3x radical3)R30 degrees structure. The coadsorption of oxygen and carbon monoxide leads to a shift of the CO stretching frequency to higher wave numbers with increasing O to CO ratio. CO adsorption on a (2x1) oxygen layer is possible and RAIRS shows that the CO adsorbs in on top and most likely in bridge sites in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号