首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discrepancies between the published QM/MM studies (Sch?neboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2004, 126, 4017; Guallar, V.; Friesner, R. A. J. Am. Chem. Soc. 2004, 126, 8501) on H-abstraction of camphor in P450cam have largely been resolved. The crystallographic water molecule 903 situated near the oxo atom of Compound I acts as a catalyst for H-abstraction, lowering the barrier by about 4 kcal/mol. Spin density at the A-propionate side chain of heme can occur in the case of incomplete screening but has no major effect on the computed barrier.  相似文献   

2.
3.
The mechanism of benzene hydroxylation was investigated in the realistic enzyme environment of the human CYP 2C9 by using quantum mechanical/molecular mechanical (QM/MM) calculations of the whole reaction profile using the B3LYP method to describe the QM region. The calculated QM/MM barriers for addition of the active species Compound I to benzene are consistent with experimental rate constants for benzene metabolism in CYP 2E1. In contrast to gas-phase model calculations, our results suggest that competing side-on and face-on geometries of arene addition may both occur in the case of aromatic ring oxidation in cytochrome P450s. QM/MM profiles for three different rearrangement pathways of the initially formed sigma-adduct, leading to formation of epoxide, ketone, and an N-protonated porphyrin species, were calculated. Our results suggest that epoxide and ketone products form with comparable ease in the face-on pathway, whereas epoxide formation is preferred in the side-on pathway. Additionally, rearrangement to the N-protonated porphyrin species was found to be competitive with side-on epoxide formation. This suggests that overall, the competition between formation of epoxide and phenol final products in P450 oxidation of aromatic substrates is quite finely balanced.  相似文献   

4.
Human cytochromes P450 play a vital role in drug metabolism. The key step in substrate oxidation involves hydrogen atom abstraction or C=C bond addition by the oxygen atom of the Compound I intermediate. The latter has three unpaired electrons, two on the Fe-O center and one shared between the porphyrin ring and the proximal cysteinyl sulfur atom. Changes in its electronic structure have been suggested to affect reactivity. The electronic and geometric structure of Compound I in three important human subfamilies of cytochrome P450 (P450, 2C, 2B, and 3A) that are major contributors to drug metabolism is characterized here using combined quantum mechanical/molecular mechanical (QM/MM) calculations at the B3LYP:CHARMM27 level. Compound I is remarkably similar in all isoforms, with the third unpaired electron located mainly on the porphyrin ring, and this prediction is not very sensitive to details of the QM/MM methodology, such as the DFT functional, the basis set, or the size of the QM region. The presence of substrate also has no effect. The main source of variability in spin density on the cysteinyl sulfur (from 26 to 50%) is the details of the system setup, such as the starting protein geometry used for QM/MM minimization. This conformational effect is larger than the differences between human isoforms, which are therefore not distinguishable on electronic grounds, so it is unlikely that observed large differences in substrate selectivity can be explained to a large extent in these terms.  相似文献   

5.
In the catalytic cycle of cytochrome P450cam, after molecular oxygen binds as a ligand to the heme iron atom to yield a ferrous dioxygen complex, there are fast proton transfers that lead to the formation of the active species, Compound I (Cpd I), which are not well understood because they occur so rapidly. In the present work, the conversion of the ferric hydroperoxo complex (Cpd 0) to Cpd I has been investigated by combined quantum-mechanical/molecular-mechanical (QM/MM) calculations. The residues Asp(251) and Glu(366) are considered as proton sources. In mechanism I, a proton is transported to the distal oxygen atom of the hydroperoxo group via a hydrogen bonding network to form protonated Cpd 0 (prot-Cpd0: FeOOH(2)), followed by heterolytic O-O bond cleavage that generates Cpd I and water. Although a local minimum is found for prot-Cpd0 in the Glu(366) channel, it is very high in energy (more than 20 kcal/mol above Cpd 0) and the barriers for its decay are only 3-4 kcal/mol (both toward Cpd 0 and Cpd I). In mechanism II, an initial O-O bond cleavage followed by a concomitant proton and electron transfer yields Cpd I and water. The rate-limiting step in mechanism II is O-O cleavage with a barrier of about 13-14 kcal/mol. According to the QM/MM calculations, the favored low-energy pathway to Cpd I is provided by mechanism II in the Asp(251) channel. Cpd 0 and Cpd I are of similar energies, with a slight preference for Cpd I.  相似文献   

6.
QM/MM calculations provide a means for predicting the electronic structure of the metal center in metalloproteins. Two heme peroxidases, Cytochrome c Peroxidase (CcP) and Ascorbate Peroxidase (APX), have a structurally very similar active site, yet have active intermediates with very different electronic structures. We review our recent QM/MM calculations on these systems, and present new computational data. Our results are in good agreement with experiment, and suggest that the difference in electronic structure is due to a large number of small differences in structure from one protein to another. We also discuss recent QM/MM calculations on the active species of cytochrome P450, in which a similar sensitivity of the electronic structure to the environment is found. However, this does not appear to explain different catalytic profiles of the different drug-metabolizing isoforms of this class of enzyme.  相似文献   

7.
8.
CYP19A1 aromatase is a member of the Cytochrome P450 family of hemeproteins, and is the enzyme responsible for the final step of the androgens conversion into the corresponding estrogens, via a three‐step oxidative process. For this reason, the inhibition of this enzyme plays an important role in the treatment of hormone‐dependent breast cancer. The first catalytic subcycle, corresponding to the hydroxilation of androstenedione, has been proposed to occur through a first hydrogen abstraction and a subsequent oxygen rebound step. In present work, we have studied the mechanism of the first catalytic subcycle by means of hybrid quantum mechanics/molecular mechanics methods. The inclusion of the protein flexibility has been achieved by means of Free Energy Perturbation techniques, giving rise to a free energy of activation for the hydrogen abstraction step of 13.5 kcal/mol. The subsequent oxygen rebound step, characterized by a small free energy barrier (1.5 kcal/mol), leads to the hydroxylated products through a highly exergonic reaction. In addition, an analysis of the primary deuterium kinetic isotopic effects, calculated for the hydrogen abstraction step, reveals values (~10) overpassing the semiclassical limit for the C? H, indicating the presence of a substantial tunnel effect. Finally, a decomposition analysis of the interaction energy for the substrate and cofactor in the active site is also discussed. According to our results, the role of the enzymatic environment consists of a transition state stabilization by means of dispersive and polarization effects. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The fundamental nature of reactivity in cytochrome P450 enzymes is currently controversial. Modelling of bacterial P450cam has suggested an important role for the haem propionates in the catalysis, though this finding has been questioned. Understanding the mechanisms of this enzyme family is important both in terms of basic biochemistry and potentially in the prediction of drug metabolism. We have modelled the hydroxylation of camphor by P450cam, using combined quantum mechanics/molecular mechanics (QM/MM) methods. A set of reaction pathways in the enzyme was determined. We were able to pinpoint the source of the discrepancies in the previous results. We show that when a correct ionization state is assigned to Asp297, no spin density appears on the haem propionates and the protein structure in this region remains preserved. These results indicate that the haem propionates are not involved in catalysis.  相似文献   

10.
The primary oxidant of cytochrome P450 enzymes, Compound I, is hard to detect experimentally; in the case of cytochrome P450(cam), this intermediate does not accumulate in solution during the catalytic cycle even at temperatures as low as 200 K (ref 4). Theory can play an important role in characterizing such elusive species. We present here combined quantum mechanical/molecular mechanical (QM/MM) calculations of Compound I of cytochrome P450(cam) in the full enzyme environment as well as density functional studies of the isolated QM region. The calculations assign the ground state of the species, quantify the effect of polarization and hydrogen bonding on its properties, and show that the protein environment and its specific hydrogen bonding to the cysteinate ligand are crucial for sustaining the Fe-S bond and for preventing the full oxidation of the sulfur.  相似文献   

11.
The mechanism of charge transfer among tris(8-hydroxyquinolinate)aluminum (Alq3) molecules in the electron-transporting layer (ETL) under amorphous conditions was theoretically investigated using both quantum mechanical/molecular mechanical (QM/MM) calculations and molecular dynamics (MD) simulations. The rate constant of the electron transfer was estimated for the equilibrated structure taken from the QM/MM MD simulations, based on the hopping model and Marcus theory. It was found that the coordination of a (LiF)4 cluster in ETL drastically lowers the energy of the lowest unoccupied molecular orbital in the Alq3 molecule. The small rate constant, namely the slow charge mobility, in ETL is believed to be causally related to the low-lying delocalized unoccupied molecular orbital of Alq3 coordinated by the (LiF)4 cluster. The results suggest that their interaction has a considerable influence on efficiency and is attributed in part to ETL degradation in organic light-emitting diodes.  相似文献   

12.
Cytochrome P450 3A4 is involved in the metabolism of 50% of all swallowed drugs. The enzyme functions by means of a high-valent iron-oxo species, called compound I (Cpd I), which is formed after entrance of the substrate to the active site. We explored the features of Cpd I using hybrid quantum mechanical/molecular mechanical calculations on various models that are either substrate-free or containing one and two molecules of diazepam as a substrate. M?ssbauer parameters of Cpd I were computed. Our major finding shows that without the substrate, Cpd I tends to elongate its Fe-S bond, localize the radical on the sulfur, and form hydrogen bonds with A305 and T309, which may hypothetically lead to Cpd I consumption by H-abstraction. However, the positioning of diazepam close to Cpd I, as enforced by the effector molecule, was found to strengthen the NH...S interactions of the conserved I443 and G444 residues with the proximal cysteinate ligand. These interactions are known to stabilize the Fe-S bond, and as such, the presence of the substrate leads to a shorter Fe-S bond and it prevents the localization of the radical on the sulfur. This diazepam-Cpd I stabilization was manifested in the 1W0E conformer. The effector substrate did not influence Cpd I directly but rather by positioning the active substrate close to Cpd I, thus displacing the hydrogen bonds with A305 and T309, and thereby giving preference to substrate oxidation. It is hypothesized that these effects on Cpd I, promoted by the restrained substrate, may be behind the special metabolic behavior observed in cases of multiple substrate binding (also called cooperative binding). This restraint constitutes a mechanism whereby substrates stabilize Cpd I sufficiently long to affect monooxygenation by P450s at the expense of Cpd I destruction by the protein residues.  相似文献   

13.
Recently, based on the principle of electronic chemical potential equalization and the principle of charge conservation, we proposed a flexible-boundary scheme that allows both partial charge transfer and self-consistent polarization between the quantum mechanical (QM) and molecular mechanical (MM) subsystems in QM/MM calculations; the scheme was applied to study the atomic charges in selected ion–solvent complexes. In the present contribution, we further extend the flexible-boundary treatment to handle the QM/MM boundary passing through covalent bonds. We find that the flexible-boundary redistributed charge and dipole schemes yield reasonable agreement with full-QM calculations for a number of molecular ions and amino acids with charged side chains. Using the full-QM results as reference, the mean unsigned deviations are computed to be 0.06 e for atomic partial charges of the QM atoms, 0.11 e for the amounts of charge transfer between the QM and MM subsystems, and 0.016 Å for the lengths of the covalent bonds that directly connect the QM and MM subsystems. The results indicate the importance of accounting for partial charge transfer across the QM/MM boundary when the QM subsystems are charged.  相似文献   

14.
The role of single electron transfer (SET) in P450-catalyzed N-dealkylation reactions has been studied using the probe substrates N-cyclopropyl-N-methylaniline (2a) and N-(1'-methylcyclopropyl)-N-methylaniline (2b). In earlier work, we showed that SET oxidation of 2a by horseadish peroxidase leads exclusively to products arising via fragmentation of the cyclopropane ring [Shaffer, C. L.; Morton, M. D.; Hanzlik, R. P. J. Am. Chem. Soc. 2001, 123, 8502-8508]. In the present study, we found that liver microsomes from phenobarbital pretreated rats (which contain CYP2B1 as the predominant isozyme) oxidize [1'-(13)C, 1'-(14)C]-2a efficiently (80% consumption in 90 min). Disappearance of 2a follows first-order kinetics throughout, indicating a lack of P450 inactivation by 2a. HPLC examination of incubation mixtures revealed three UV-absorbing metabolites: N-methylaniline (4), N-cyclopropylaniline (6a), and a metabolite (M1) tentatively identified as p-hydroxy-2a, in a 2:5:2 mole ratio, respectively. 2,4-Dinitrophenylhydrazine trapping indicated formation of formaldehyde equimolar with 6a; 3-hydroxypropionaldehyde and acrolein were not detected. Examination of incubations of 2a by (13)C NMR revealed four (13)C-enriched signals, three of which were identified by comparison to authentic standards as N-cyclopropylaniline (6a, 33.6 ppm), cyclopropanone hydrate (11, 79.2 ppm), and propionic acid (12, 179.9 ppm); the fourth signal (42.2 ppm) was tentatively determined to be p-hydroxy-2a. Incubation of 2a with purified reconstituted CYP2B1 also afforded 4, 6a, and M1 in a 2:5:2 mole ratio (by HPLC), indicating that all metabolites are formed at a single active site. Incubation of 2b with PB microsomes resulted in p-hydroxylation and N-demethylation only; no loss or ring-opening of the cyclopropyl group occurred. These results effectively rule out the participation of a SET mechanism in the P450-catalyzed N-dealkylation of cyclopropylamines 2a and 2b, and argue strongly for the N-dealkylation of 2a via a carbinolamine intermediate formed by a conventional C-hydroxylation mechanism.  相似文献   

15.
16.
The suicide substrate activity of N-benzyl-N-cyclopropylamine (1) and N-benzyl-N-(1'-methylcyclopropyl)amine (2) toward cytochrome P450 and other enzymes has been explained by a mechanism involving single electron transfer (SET) oxidation, followed by ring-opening of the aminium radical cation (protonated aminyl radical) and reaction with the P450 active site. Although the SET oxidation of N-cyclopropyl-N-methylaniline (3) by horseradish peroxidase leads exclusively to ring-opened (non-cyclopropyl) products, P450 oxidation of 3 leads to formation of cyclopropanone hydrate and no ring-opened products, and 3 does not inactivate P450. To help reconcile these discrepant behaviors we have determined the complete metabolic fate of 1 with P450 in vitro. 3-Hydroxypropionaldehyde (3HP), the presumptive "signature metabolite" for SET oxidation of a cyclopropylamine, was observed for the first time in 57% yield, along with cyclopropanone hydrate (34%), cyclopropylamine (9%), benzaldehyde (6%), benzyl alcohol (12%), and benzaldoxime (19%). Unexpectedly, N-benzyl-N-cyclopropyl-N-methylamine (4) was found not to inactivate P450 and not to give rise to 3HP as a metabolite without first undergoing oxidative N-demethylation to 1. These and other observations argue against a role for SET mechanisms in the P450 oxidation of cyclopropylamines. We suggest that a conventional hydrogen abstraction/hydroxyl recombination mechanism (or its equivalent as a one-step "insertion" mechanism) at C-H bonds in 1-4 leads to nonrearranged carbinolamine intermediates and thereby to "ordinary" N-dealkylation products including cyclopropanone hydrate. Alternatively, hydrogen abstraction at the N-H bond of secondary cyclopropylamines 1 gives a neutral aminyl radical which could undergo rapid ring-opening leading either to enzyme inactivation or 3HP formation.  相似文献   

17.
Fe-only hydrogenases are enzymes that catalyze dihydrogen production or oxidation, due to the presence of an unusual Fe(6)S(6) cluster (the so-called H-cluster) in their active site, which is composed of a Fe(2)S(2) subsite, directly involved in catalysis, and a classical Fe(4)S(4) cubane cluster. Here, we present a hybrid quantum mechanical and molecular mechanical (QM/MM) investigation of the Fe-only hydrogenase from Desulfovibrio desulfuricans, in order to unravel key issues regarding the activation of the enzyme from its completely oxidized inactive state (Hoxinact) and the influence of the protein environment on the structural and catalytic properties of the H-cluster. Our results show that the Fe(2)S(2) subcluster in the Fe(II)Fe(II) redox state - which is experimentally observed for the completely oxidized form of the enzyme - binds a water molecule to one of its metal centers. The computed QM/MM energy values for water binding to the diferrous subsite are in fact over 70 kJ mol(-1); however, the affinity toward water decreases by 1 order of magnitude after a one-electron reduction of H(ox)(inact), thus leading to the release of coordinated water from the H-cluster. The investigation of a catalytic cycle of the Fe-only hydrogenase that implies formation of a terminal hydride ion and a di(thiomethyl)amine (DTMA) molecule acting as an acid/base catalyst indicates that all steps have reasonable reaction energies and that the influence of the protein on the thermodynamic profile of H(2) production catalysis is not negligible. QM/MM results show that the interactions between the Fe(2)S(2) subsite and the protein environment could give place to structural rearrangements of the H-cluster functional for catalysis, provided that the bidentate ligand that bridges the iron atoms in the binuclear subsite is actually a DTMA residue.  相似文献   

18.
The stereospecific cytochrome P450-catalyzed hydroxylation of the C(5)-H((5-exo)) bond in camphor has been studied theoretically by a combined quantum mechanical/molecular mechanical (QM/MM) approach. Density functional theory is employed to treat the electronic structure of the active site (40-100 atoms), while the protein and solvent environment (ca. 24,000 atoms) is described by the CHARMM force field. The calculated energy profile of the hydrogen-abstraction oxygen-rebound mechanism indicates that the reaction takes place in two spin states (doublet and quartet), as has been suggested earlier on the basis of calculations on simpler models ("two-state reactivity"). While the reaction on the doublet potential energy surface is nonsynchronous, yet effectively concerted, the quartet pathway is truly stepwise, including formation of a distinct intermediate substrate radical and a hydroxo-iron complex. Comparative calculations in the gas phase demonstrate the effect of the protein environment on the geometry and relative stability of intermediates (in terms of spin states and redox electromers) through steric constraints and electronic polarization.  相似文献   

19.
Single-electron transfer and hydrogen atom transfer pathways have been proposed to account for the cytochrome P450-catalyzed alpha-carbon oxidations of amines. With the aid of electrochemistry-electrospray ionization mass spectrometry, the electrochemical potentials required for the one-electron oxidations of N-methyl- and selected N-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridinyl derivatives and the chemical fates of the resulting aminyl radical cations have been investigated. Comparison of the results of these studies with those observed in the corresponding enzyme catalyzed oxidations suggests that aminyl radical cations are not obligatory intermediates in the cytochrome P450-catalyzed alpha-carbon oxidations of this class of substrates.  相似文献   

20.
We investigate the excited-state decay processes for the 3-(2-cyano-2- phenylethenyl-Z)-NH-indole (CPEI) in the solid phase through combined quantum mechanics and molecular mechanics (QM/MM) and vibration correlation formalisms for radiative and nonradiative decay rates, coupled with time-dependent density functional theory (TDDFT). By comparing the isolated CPEI molecule and the molecule-in-cluster, we show that the molecular packing through intermolecular hydrogen-bonding interactions can hinder the excited-state nonradiative decay and thus enhance the fluorescence efficiency in the solid phase. Aggregation effect is shown to block the nonradiative decay process through hindering the low-frequency vibration motions. The fluorescence quantum yields for both isolated molecule and aggregation are predicted to be insensitive to temperature due to the hydrogen-bonding nature, and their values at room temperature are consistent with the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号