首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究初生空化流动形态及其紊流流场结构,采用高速录像技术观察了绕Clark-Y型水翼初生空化的空化形态,应用LDV分别测量了无空化和初生空化条件下的紊流流场分布.结果表明,绕水翼小攻角无分离流动区域的初生空化形态呈游离发夹涡型空泡团结构,但其具有和单泡相同的发展过程;初生空化和无空化紊流流场的速度和紊流强度没有发现有规律性的差异,初生游离型空穴的形成与发展过程,对雷诺平均流场没有显著的影响.  相似文献   

2.
The surface geometry of a cavitating vortex is determined in the limit of inviscid incompressible flow. The limit surface is an ovaloid of revolution with an axis ratio of 5: 3. It is shown that a cavitating vortex ring cannot develop if the cavitation number is lower than a certain critical value. Experiments conducted at various liquid pressures and several jet exit velocities confirm the existence of a critical cavitation number close to 3. At cavitation numbers higher than the critical one, the cavitating vortex ring does not develop. At substantially lower cavitation numbers (k ? 0.1), an elongated asymmetric cavitation bubble is generated, with an axial reentrant jet whose length can exceed the initial jet length by several times. This flow structure is called an asymmetric cavitating vortex, even though steady motion of this structure has not been observed.  相似文献   

3.
The present article focuses on modeling issues to simulate cryogenic fluid cavitating flows.A revised cavitation model,in which the thermal effect is considered,is derivated and established based on Kubota model.Cavitating flow computations are conducted around an axisymmetric ogive and a 2D quarter caliber hydrofoil in liquid nitrogen implementing the revised model and Kubota model coupled with energy equation and dynamically updating the fluid physical properties,respecitively.The results show that the revised cavitation model can better describe the mass transport process in the cavitation process in cryogenic fluids.Compared with Kubota model,the revised model can reflect the observed"frosty"appearance within the cavity.The cavity length becomes shorter and it can capture the temperature and pressure depressions more consistently in the cavitating region,particularly at the rear of the cavity.The evaporation rate decreases,and while the magnitude of the condensation rate becomes larger because of the thermal effect terms in the revised model compared with the results obtained by the Kubota model.  相似文献   

4.
采用高速全流场显示技术和DPIV对空化水翼近壁处的空化云流动形态和运动机理进行了讨论.结果表明:绕Hydronautics翼型的空化云运动是一个准周期性过程:稳定空泡团初生在翼型前部,向翼型后部发展布满整个翼面,在翼型后缘出现汽泡团旋涡,伴随反向运动,最终向下游脱落.当前条件下空泡团旋涡脱落周期约为74 ms.空化区与主流区的交界面上存在较大的速度梯度,一组对涡出现在翼型尾部处交界面上.此外,采用以空泡为示踪粒子的DPIV能够对空化流动流速分布进行有效测量.  相似文献   

5.
采用变密度随机涡模型,对H2/O2/N2湍流射流扩散火焰进行数值模拟,湍流过程通过涡的采样、涡的抑制和涡的翻转实现.其中,针对变密度反应流问题,提出一种大涡抑制的新机制,并详细讨论各种参数对模型预测效果的影响.计算结果表明,修改后的模型可以合理预测H2/O2/N2射流火焰结构,能够反映湍流的涡特性;模型中与涡采样和涡抑制有关的参数对预测结果有一定影响.  相似文献   

6.
We have employed the large eddy simulation (LES) approach to investigate the cavitation noise characteristics of an unsteady cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil by employing an Eulerian-Lagrangian based multiscale cavitation model. A volume of fluid (VOF) method simulates the large cavity, whereas a Lagrangian discrete bubble model (DBM) tracks the small bubbles. Meanwhile, noise is determined using the Ffowcs Williams-Hawkings equation (FW-H). Eulerian-Lagrangian analysis has shown that, in comparison to VOF, it is more effective in revealing microscopic characteristics of unsteady cavitating flows, including microscale bubbles, that are unresolvable around the cloud cavity, and their impact on the flow field. It is also evident that its evolution of cavitation features on the hydrofoil is more consistent with the experimental observations. The frequency of the maximum sound pressure level corresponds to the frequency of the main cavity shedding for the noise characteristics. Using the Eulerian-Lagrangian method to predict the noise signal, results show that the cavitation noise, generated by discrete bubbles due to their collapse, is mainly composed of high-frequency signals. In addition, the frequency of cavitation noise induced by discrete microbubbles is around 10 kHz. A typical characteristic of cavitation noise, including two intense pulses during the collapsing of the cloud cavity, is described, as well as the mechanisms that underlie these phenomena. The findings of this work provide for a fundamental understanding of cavitation and serve as a valuable reference for the design and intensification of hydrodynamic cavitation reactors.  相似文献   

7.
8.
Hydrodynamic cavitation (HC) in the Venturi nozzle, apart from the harmful influence on the devices, can be used to improve a range of industrial processes, such as biofuel generation, emulsion preparation, and wastewater treatment. The present investigation deals with the influence of dissolved air in Venturi cavitating flow based on numerical and experimental approaches. The experimental campaigns have been done in a closed-loop water tunnel equipped with a Venturi test section. The post-processing techniques such as Fast Fourier Transform (FFT), Power Spectral Density (PSD), temporal/spatial Grey Level distribution and mean value grey level distribution are employed to analyse the experimental observations and measurement. The URANS numerical method is modified based on the Density Corrected-Based Model (DCM) to be more adaptable for flows with high differences in density. The results approve the remarkable effect of dissolved air on the configuration of the cavity, its evolution process, and transient/averaged characteristics. It is observed that the incipient point and ratio of sheet cavity length to cloud cavity length are changed. Furthermore, the flow velocity inside of the sheet and cloud cavities is different; as well as, the higher content of dissolved air leads to slower flow velocity inside the cloud cavity. In addition, the shedding frequency is significantly reduced in case of higher level of air content.  相似文献   

9.
In the present work, both computational and experimental methods are employed to study the two-phase flow occurring in a model pump sump. The two-fluid model of the two-phase flow has been applied to the simulation of the three-dimensional cavitating flow. The governing equations of the two-phase cavitating flow are derived from the kinetic theory based on the Boltzmann equation. The isotropic RNG$k-\epsilon-k_{ca}$ turbulence model of two-phase flows in the form of cavity number instead of the form of cavity phase volume fraction is developed. The RNG $k-\epsilon-k_{ca}$ turbulence model, that is the RNG$k-\epsilon$ turbulence model for the liquid phase combined with the $k_{ca}$model for the cavity phase, is employed to close the governing turbulent equations of the two-phase flow. The computation of the cavitating flow through a model pump sump has been carried out with this model in three-dimensional spaces. The calculated results have been compared with the data of the PIV experiment. Good qualitative agreement has been achieved which exhibits the reliability of the numerical simulation model.  相似文献   

10.
采用高速全流场显示技术分别观测了绕超空化水翼和Clark-Y型水翼的云状空化.结果表明:绕超空化水翼和Clark-Y型水翼的云状空化具有相同的变化过程,即:生成、成长、膨胀、脱落和消失溃灭五种状态,两种空化云流动都具有明显的脱落周期和脱落轨迹.在翼型尾部存在的反方向射流,致使空化旋涡脱落;尽管模型尺度、来流速度和空化数基本相同,但由于超空化水翼与Clark-Y型水翼断面形状不同,使翼型尾部的反方向射流强度不同,故与来流相互作用强度不同,导致绕两种水翼的空化云脱落周期不同.在本文实验条件下,绕超空化水翼空化云和Clark-Y型水翼空化云的脱落频率分别为13.5 Hz和19 Hz.  相似文献   

11.
The influence of Reynolds number and blockage ratio on the vortex dynamics of a trapezoidal bluff body placed inside a circular pipe is studied experimentally and numerically. Low aspect ratio, high blockage ratio, curved end conditions (junction of pipe and bluff body), axisymmetric upstream flow with shear and turbulence are some of the intrinsic features of this class of bluff body flows which have been scarcely addressed in the literature. A large range (200:200,000) of Reynolds number (ReD) is covered in this study, encompassing all the three pipe flow regimes (laminar, transition and turbulent). Four different flow regimes are defined based on the distinct features of Strouhal number (St)–ReD relation: steady, laminar irregular, transition and turbulent. The wake in the steady regime is stationary with no oscillations in the shear layer. The laminar regime is termed as irregular owing to irregular vortex shedding. The vortex shedding in this regime is observed to be symmetric. The emergence of separation bubble downstream of the bluff body on either side is another interesting feature of this regime, which is further observed to be symmetric. Two pairs of mean streamwise vortices are noticed in the near-wake regime, which are termed as reverse dipole-type wake topology. Beyond the irregular laminar regime, the Strouhal number falls gradually and vortex shedding becomes more periodic. This regime is named transition and occurs close to the Reynolds number at which transition to turbulence takes place in a fully developed pipe. The turbulent regime is characterised by a nearly constant Strouhal number. Typical Karman-type vortex shedding is noticed in this regime. The convection velocity, wake width formation length and irrecoverable pressure loss are quantified to highlight the influence of blockage ratio. These results will be useful to develop basic understanding of vortex dynamics of confined bluff body flow for several practical applications.  相似文献   

12.
绕水翼片状空化流动结构的数值与实验研究   总被引:3,自引:0,他引:3  
采用数值与实验相结合的方法研究了水翼片状空化流动结构.实验采用高速录像技术观察了片状卒泡形态,应用LDV测量了翼型周围的湍动能和速度分布;采用N-S方程和基于空泡动力学方程的空化模型计算了绕水翼片状空化流场.结果表明:在片状空化阶段,翼型吸力面上附着很薄的一层透明空泡,空泡彤态呈现于指状;随着空化数的减少,空泡尾部水汽交界面相互作用增强,并且空泡尾部出现大的旋涡,影响了空泡尾部区域压力和速度分布,片状空泡尾部的水汽混合区出现不稳定现象,同时存在小的空泡团脱落.数值模拟得到的水翼片状空化流动现象和实验观察到的结果基本一致,验证了计算模型和数值方法的可靠性.  相似文献   

13.
The aim of this work is to propose a new model for turbulent flows, called the fractal model (FM), applicable both in a Reynolds averaged Navier–Stokes (RANS) and a large-eddy simulation (LES) formulation, with the ultimate goal of applying it to simulate turbulent combustion irrelevant of its mode (premixed or non-premixed). The model is able to turn itself off in the laminar zones of the flow, and in particular near walls. It is based on the fractal theory. It describes the physics of the smaller spatial scales and therefore represents a small-scales model.

FM describes the physics of the small scales of turbulence based on the phenomenological concept of vortex cascade and on the self-similar behaviour of turbulence in the inertial range. Such a model is used in each cell of a numerical calculation. A characteristic length Δ is associated to each cell, and the local energy u 3 Δ/Δ is distributed over a certain number of eddies, which depends on the local Reynolds number Re Δ. Each vortex of the cascade generates N c vortices; the recursive process of vortex generation terminates at the dissipative scale level, i.e. when the eddy Reynolds number is equal to one. FM is also able to estimate the volume fraction occupied by the dissipative fine structures of turbulence; this quantity is critical in reactive turbulent flows.

The physics of small scales is summarized by a turbulent ‘viscosity’ μt, to be added to the molecular one. μt is zero where the flow is laminar and, in particular, goes to zero at solid walls. Assuming μt to be isotropic, FM is applicable in a RANS formulation (IFM, isotropic fractal model). The model can be extended to the anisotropic case (AFM, anisotropic fractal model) and therefore used to close the transport equations in an LES approach. In the present paper, the model (IFM) is used in a RANS approach and is validated through a test case studied experimentally by Johnson and Bennett, and numerically (with LES) by Akselvoll and Moin. The results obtained are in good agreement both with the experimental and the numerical ones. Other tests are being performed.  相似文献   

14.
A finite element-based large eddy simulation (LES) is proposed using a combination of the residual-based variational multiscale (RBVMS) approach and the dynamic Smagorinsky eddy-viscosity model. In this combined model, the cross-stress terms are modelled using the RBVMS approach while the eddy-viscosity model is used to represent the Reynolds stresses. The eddy-viscosity is computed dynamically in a local fashion for which a localized version of the variational Germano identity is developed. To improve the robustness of the local dynamic procedure, two types of averaging schemes are considered. The first type employs spatial averaging over homogeneous direction(s) which is only applicable to turbulent flows with statistical homogeneity in at least one direction. The second type is based on Lagrangian averaging over fluid pathtubes, which is applicable to inhomogeneous turbulent flows. The predictions from the combined model are compared to the direct numerical simulation or experimental data and also to the predictions from the RBVMS model. This is done for two cases: turbulent flow in a channel (Reτ = 590) and flow over a cylinder (ReD = 3, 900). For the turbulent channel flow, predictions are similar between the RBVMS model and the combined model. For flow over a cylinder, the combined model provides better predictions, specifically for fluctuations in the streamwise velocity and lift.  相似文献   

15.
为控制轴流泵空化的发生与发展,提出了一种在轴流泵叶片背面布置不连续凸起结构的方案.基于ANSYSCFX软件,对350ZQ-125-30型潜水轴流泵进行数值模拟,对比分析改进模型与原模型流道内压力、湍动能、空泡及流线分布的变化.结果表明,改进后叶片背面低压区域减小,工作面高压区域明显增大,临界空化余量降低;在空化的各个阶...  相似文献   

16.
绕Hydronautics水翼空化旋涡的高速录像观察   总被引:2,自引:0,他引:2  
为了解hydronautics超空化水翼的绕流流场特性,采用高速摄像机等流动显示设备,在空化水洞中针对此种超空化水翼进行了一系列绕流流场显示实验。实验结果表明,绕这种超空化水翼的空化形成与发展,均与产生于翼型前端 (吸力面)和尾端(压力面)的旋涡或二者的结合体:空化涡街有关;空化数的大小,决定了空化涡街形成与溃灭的不同特征;当空化数较低时,涡街中空化旋涡的扩张形成了闭合的超空化区域。  相似文献   

17.
A deconvolution enhancement of the Navier–Stokes-αβ model for turbulent flow is introduced. The energy and energy-dissipation rate for the enhanced model are derived. It is also shown that the consistency error, relative to the Navier–Stokes equations, and the microscale of the enhanced model are less than those of the Navier–Stokes-αβ model. The proposed model is used to simulate the Taylor–Green vortex problem and results show a qualitatively improved representation of the mean-square vorticity when compared to the Navier–Stokes-αβ model. Numerical studies of the energy spectrum and the alignment between the vorticity and the eigenvectors of the stretching tensor for three-dimensional turbulent flows with Re = 200 are used to explore the utility of the model. A benchmark problem of a two-dimensional channel flow over a step for Re = 600 also indicates that this model can be applied to more general flows than those involving periodic boundary conditions.  相似文献   

18.
We have proposed and developed a microscopic model of depinning (escape) of a multiquantum vortex in a superconductor with a cylindrical nonconducting cavity with the transverse size smaller than or on the order of the superconducting coherence length ξ0 at zero temperature. The spectrum of subgap quasiparticle excitations in two- and three-quantum vortices trapped by a cylindrical cavity has been calculated in the quasiclassical approximation. It is shown that the transformation of the spectrum is accompanied by break of anomalous spectral branches due to normal reflection of quasiparticles from the surface of a defect. A microscopic (spectral) criterion for multiquantum vortex pinning has been proposed; according to this criterion, the multiquantum vortex can be trapped in the cavity during the formation of a minigap in the elementary excitation spectrum near the Fermi level. Self-consistent calculations of density of states N(r, ε) for two- and three-quantum vortices trapped by a cylindrical cavity of radius on the order of ξ0 have been performed using quasiclassical Eilenberger equations. In the pure limit and for low temperatures T ? T c , peculiarities observed in the N(r, ε) distribution reflect the presence of M anomalous spectral branches in the M-quantum vortex and confirm the correctness of the spectral criterion of pinning (depinning) of a multiquantum vortex.  相似文献   

19.
Flow visualization was used to study the fluid-structure interaction between a circular cylinder and a shallow turbulent open channel flow. The Reynolds number ranged from Re D = 1500–4400 based on the cylinder diameter, and from Re H =7,800?27,600 based on the channel hydraulic radius. The cylinder was mounted vertically on the channel bed and the flow depth-to-cylinder-diameter ratio was varied fromd/D=7.0?11.7. Tests were carried out over smooth and rough beds, with the rough beds being either permeable or impermeable. The study showed that the horseshoe vortex forming at the cylinder-bed junction affects many of the flow structures, including the mode of vortex shedding, the shear layer dynamics, the vortex formation length, and the width of the near-wake region. The influence of the horseshoe vortex can be recognized throughout the depth of flow; however, its influence decreases with an increase in distance from the channel bed. It was also possible to discern that the bed roughness resulted in a change to the above interaction and the permeability of the bed resulted in additional changes.  相似文献   

20.
阐述了采用空化黏流CFD瞬态模拟和脉冲球形气泡辐射噪声理论相结合的思路在螺旋桨空化低频噪声谱预报上的应用方法。预报了全附体SUBOFF潜艇标称伴流条件下的NSRDC4383五叶大侧斜桨和某七叶大侧斜桨的片空化低频噪声谱,分析了桨叶负载和空化程度对线谱成分及其谱源级的影响。空化模拟时采用作者提出的且可信性经过验证的改进Sauer空化模型和修正SST湍流模型。噪声谱预报时空化体积由空化特征长度求取,较空泡表面球形等价假设更加合理。计算表明,七叶桨较五叶桨的确具有负载小、空化初生延迟、空化低频线谱噪声低的特征。在相同的基于航速的空化数下,非均匀进流与桨叶相互作用会明显增加线谱成分及其谱源级。在伴流、空化数和转速一定时,随着负载减小,推力、力矩和桨叶空化面积均会减小,但空化体积加速度幅度却变大,离散线谱噪声级增加且由奇次谐频为主转变为以偶次谐频为主;当仅减小空化程度时,谐频线谱成分明显被抑制,且1 kHz频率处谱源级减小2.54 dB。较完整地构建了螺旋桨空化水动力和噪声性能评估的数值平台,可用于指导艇尾低噪声桨的数值设计。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号