首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Previous studies on wake flow visualization of live animals using DPIV have typically used low repetition rate lasers and 2D imaging. Repetition rates of around 10 Hz allow ~1 image per wingbeat in small birds and bats, and even fewer in insects. To accumulate data representing an entire wingbeat therefore requires the stitching-together of images captured from different wingbeats, and at different locations along the wing span for 3D-construction of wake topologies. A 200 Hz stereo DPIV system has recently been installed in the Lund University wind tunnel facility and the high-frame rate can be used to calculate all three velocity components in a cube, whose third dimension is constructed using the Taylor hypothesis. We studied two bat species differing in body size, Glossophaga soricina and Leptonycteris curasoa. Both species shed a tip vortex during the downstroke that was present well into the upstroke, and a vortex of opposite sign to the tip vortex was shed from the wing root. At the transition between upstroke/downstroke, a vortex loop was shed from each wing, inducing an upwash. Vorticity iso-surfaces confirmed the overall wake topology derived in a previous study. The measured dimensionless circulation, Γ/Uc, which is proportional to a wing section lift coefficient, suggests that unsteady phenomena play a role in the aerodynamics of both species.  相似文献   

2.
The near wake of square cylinders with different corner radii was experimentally studied based on particle imaging velocimetry (PIV), laser doppler anemometry (LDA) and hotwire measurements. Four bluff bodies, i.e., r/d=0 (square cylinder), 0.157, 0.236, 0.5 (circular cylinder), where r is corner radius and d is the characteristic dimension of the bluff bodies, were examined. A conditional sampling technique was developed to obtain the phase-averaged PIV data in order to characterize quantitatively the effect of corner radii on the near-wake flow structure. The results show that, as r/d increases from 0 to 0.5, the maximum strength of shed vortices attenuates, the circulation associated with the vortices decreases progressively by 50%, the Strouhal number, St, increases by about 60%, the convection velocity of the vortices increases along with the widening of the wake width by about 25%, the vortex formation length and the wake closure length almost double in size. Meanwhile, both the vortex wavelength, λ x , and the lateral spacing, λ y , decrease as r/d increases, but the ratio of λ y to λ x is approximately 0.29, irrespective of r/d, which is close to the theoretical value of 0.281 for a stable Karman vortex street. The decrease in wavelength is probably responsible for the change in the flow structure from the approximately circular-shaped vortex at r/d=0 to the laterally stretched vortex at r/d=0.5. The leading edge corner radius is more important than the trailing one in influencing the near wake structure since it determines to a great extent the behavior of the streamlines, the separation angle and the base pressure. It is further found that the ratio of the mean drag coefficient to the total shed circulation, C d0, approaches a constant, about 0.25 for different bluff bodies in the subcritical flow regime. The streamwise evolution of vortices and the streamwise fluctuating velocity along the centerline for rounded cylinders are also discussed.  相似文献   

3.
The impact of Gurney flaps, of different heights and perforations, on the growth and development of a tip vortex, both along the tip and in the near field of a finite NACA 0012 wing, at Re = 1.05 × 105 was investigated by using particle image velocimetry (PIV). Wind-tunnel force balance measurements were also made to supplement the PIV results. This study is a continuation of the work of Lee and Ko (Exp Fluids 46(6):1005–1019, 2009) on the near-wake measurements behind perforated Gurney flaps. The present results show that along the tip, the overall behavior of the secondary vortices and their interaction with the primary, or tip, vortex remained basically unchanged, regardless of flap height and perforation. The peak vorticity of the tip vortex, however, increased with flap height and always exhibited a local maximum at x/c = 0.8 (from the leading edge). In the near field, the strength and structure of the near-field tip vortex were found to vary greatly with the flap height and perforation. The small flaps produced a more concentrated tip vortex with an increased circulation, while the large Gurney flaps caused a disruption of the tip vortex. The disrupted vortex can, however, be re-established by the addition of flap perforation. The larger the flap perforation the more organized the tip vortex. The Gurney flaps have the potential to serve as an alternative off-design wake vortex control device.  相似文献   

4.
The dye visualization experiments show that a dual leading-edge vortex (LEV) structure exists on the suction side of a simplified butterfly model of Papilio ulysses at α = 8°−12°. Furthermore, the results of particle image velocimetry (PIV) measurement indicate that the axial velocity of the primary (outer) vortex core reaches the lower extreme value while a transition from a “wake-like” to a “jet-like” axial velocity profile occurs. The work reveals for the first time the existence of dual LEV structure on the butterfly-like forward-sweep wing configuration.  相似文献   

5.
This paper reports results of DPIV measurements on a two-dimensional elliptic airfoil rotating about its own axis of symmetry in a fluid at rest and in a parallel freestream. In the former case, we examined three rotating speeds (Re c = 400, 1,000 and 2,000), and in the later case, four rotating speeds (Ro c = 2.4, 1.2, 0.6 and 0.4), together with two freestream velocities (Re c,u  = 200 and 1,000) and two starting configurations of the airfoil (i.e., chord parallel to (α 0 = 0°) or normal (α 0 = 90°) to the freestream). Results show that a rotating airfoil in a stationary fluid produces two distinct types of vortex structures depending on the Reynolds number. The first type occurs at the lowest Reynolds number (Re c = 400), where vortices shed from the two edges or tips of the airfoil dissipated quickly, resulting in the airfoil rotating in a layer of diffused vorticity. The second type occurs at higher Reynolds numbers (i.e., Re c = 1,000 and 2,000), where the corresponding vortices rotated together with the airfoil. Due to the vortex suction effect, the torque characteristics are likely to be heavily damped for the first type because of the rapidly subsiding vortex shedding, and more oscillatory for the second type due to persistent presence of tip vortices. In a parallel freestream, increasing the tip-speed ratio (V/U) of the airfoil (i.e., decreasing the Rossby number, Ro c) transformed the flow topology from periodic vortex shedding at Ro c = 2.4 to the generation of a “hovering vortex” at Ro c = 0.6 and 0.4. The presence of the hovering vortex, which has not been reported in literature before, is likely to enhance the lift characteristics of the airfoil. Freestream Reynolds number is found to have minimal effect on the vortex formation and shedding process, although it enhances shear layer instability and produces more small-scale flow structures that affect the dynamics of the hovering vortex. Likewise, initial starting configuration of the airfoil, while affecting the flow transient during the initial phase of rotation, has insignificant effect on the overall flow topology. Unfortunately, technical constraint of our apparatus prevented us from carrying out complimentary force measurements; nevertheless, the results presented herein, which are more extensive than those computed by Lugt and Ohring (1977), will provide useful benchmark data, from which more advanced numerical calculations can be carried out to ascertain the corresponding force characteristics, particularly for those conditions with the presence of hovering vortex.  相似文献   

6.
The development of Micro Air Vehicles with flapping wings is inspired from the observation and study of natural flyers such as insects and birds. This article explores the rotational power consumption of a flapping wing using a mechanical flapper at Re ≃ 4,500. This mechanical flapper is simplified to a 2D translation and a rotation in a water tank. Moreover, the wing kinematics are reduced to a linear translation and a rotation for the purpose of our study. We introduce the notion of non-ideal flapper and associated non-ideal rotational power. Such non-ideal devices are defined as consuming power for adding and removing mechanical power to and from the flow, respectively. First, we use a traditional symmetrical wing kinematic which is a simplified kinematic inspired from natural flyers. The lift coefficient of this flapping is about C L ≃ 1.5. This symmetrical wing kinematic is chosen as a reference. Further, wing kinematics with asymmetric rotations are then compared with this one. These new kinematics are built using a differential velocity defined according to the translational kinematics, a time lag and a distance, r kp. The analogy of this distance is discussed as a key point to follow along the chord. First, the wing kinematics are varied keeping a similar shape for the profiles of the angular velocity. It is shown that when compared to the reference wing kinematic, a 10% reduction in the rotational power is obtained whilst the lift is reduced by 9%. Second, we release the limitation to a similar shape for the profiles of the angular velocity leading to a novel shape for the angular velocity profile named here as “double bump” profile. With these new wing kinematics, we show that a 60% reduction in the non-ideal rotational power can be achieved whilst the lift coefficient is only reduced by 1.7%. Such “double bump kinematics” could then be of interest to increase the endurance of Micro Air Vehicles.  相似文献   

7.
An experimental study of scalar mixing in a laminar vortex is presented for vortices generated between two gas streams flowing parallel to each other in a rectangular flow channel. An isolated line vortex is initiated on demand by momentarily increasing one stream velocity in relation to the other using an electromagnetically actuated piston. The temporal piston motion profile is tailored to generate vortices of different strengths corresponding to vortex Reynolds numbers, Re≡Γ/2πν=130–210. Evolution of mixing is monitored by laser-induced fluorescence of acetone vapor premixed into one of the gas streams as the vortex structure evolves with increasing downstream distance from its point of origin. Vortex is generated by pulsing either of the gas streams (seeded or unseeded stream). Vortex initiation process affects the abundance of the gas in the vortex core from the pulsed stream. Spatial mixing statistics are obtained by determining scalar concentration probability density functions (pdf) and the mean mixed fluid concentrations obtained from these pdfs. It is found that the interfacial area generation as a result of vortex kinematics and molecular diffusion along this interface are principally responsible for mixing. The mean mixed fluid concentration in the vortex interaction region scales with the product of vortex circulation and the elapsed time of interaction. These results are similar to those found in liquid mixing experiments, but the rate of mixing is significantly higher due to higher diffusivity of gases.  相似文献   

8.
The ‘plug’ flow emerging from a long rotating tube into a large stationary reservoir was used in the experimental investigation of swirling jets with Reynolds numbers, Re = 600, 1,000 and 2,000, and swirl numbers, S = ΩR/U, in the range 0–1.1, to cover flow regimes from the non-rotating jet to vortex breakdown. Here Ω is the nozzle rotation rate, R is the radius of the nozzle exit, and U is the mean mass axial velocity. The jet was more turbulent and eddies shed faster at larger Re. However the flow criticality and shear layer morphology remained unchanged with Re. After the introduction of sufficient rotation, co-rotating and counter-winding helical waves replaced vortex rings to become the dominant vortex structure. The winding direction of the vortex lines suggests that Kelvin–Helmholtz and generalized centrifugal instability dominated the shear layer. A quantitative visualization study has been carried out for cases where the reservoir was rotating independently with S a  = Ω a R/U = ±0.35, ±0.51 and ±0.70 at Re = 1,000 and 2000, where Ω a is the rotation rate of the reservoir. The criterion for breakdown was found to be mainly dependent on the absolute swirl number of the jet, S. This critical swirl number was slightly different in stationary and counter-swirl surroundings but obviously smaller when the reservoir co-rotated, i.e. S c  = 0.88, 0.85 and 0.70, respectively. These results suggest that the flow criticality depends mainly on the velocity distributions of the vortex core, while instabilities resulting from the swirl difference between the jet and its ambient seem to have only a secondary effect.  相似文献   

9.
In this paper we consider the asymptotic behavior of the Ginzburg–Landau model for superconductivity in three dimensions, in various energy regimes. Through an analysis via Γ-convergence, we rigorously derive a reduced model for the vortex density and deduce a curvature equation for the vortex lines. In the companion paper (Baldo et al. Commun. Math. Phys. 2012, to appear) we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H c1, and the critical angular velocity of rotating Bose–Einstein condensates.  相似文献   

10.
This paper addresses nonlinear effects which result from the interaction of shock waves with vortices. A series of experiments are carried out, which involve the interaction of a strong shock wave with a single plane vorticity wave and a randomly distributed wave system. These experiments are first conducted in the linear regime to obtain a mutual verification of theory and computation. They are subsequently extended into the nonlinear regime. A systematic study of the interaction of a plane shock wave and a single vortex is then conducted. Specifically, we investigate the conditions under which nonlinear effects become important, both as a function of shock Mach number, M 1, and incident vortex strength (characterized by its circulation Γ). The shock Mach number is varied from 2 to 8, while the circulation of the vortex is varied from infinitesimally small values (linear theory) to unity. Budgets of vorticity, dilatation, and pressure are obtained. They indicate that nonlinear effects become more significant as both the shock Mach number and the circulation increase. For Mach numbers equal to 5 and above, the dilatation in the vortex core grows quadratically with circulation. An acoustic wave propagates radially outward from the vortex center. As circulation increases, its upstream-facing front steepens at low Mach numbers, and its downstream-facing front steepens at high Mach numbers. A high Mach number asymptotic expansion of the Rankine--Hugoniot conditions reveals that nonlinear effects dominate both the shock motion and the downstream flow for ΓM 1 > 1. Received 28 June 1997 and accepted 25 November 1997  相似文献   

11.
The optimal dimensions of convective-radiating circular fins with variable profile, heat-transfer coefficient and thermal conductivity, as well as internal heat generation are obtained. A profile of the form y=(w/2) [1+(r o/r) n ] is studied, while variation of thermal conductivity is of the form k=k o[1+ɛ((TT )/ (T bT )) m ]. The heat-transfer coefficient is assumed to vary according to a power law with distance from the bore, expressed as h=K[(rr o)/(r er o)]λ. The results for λ=0 to λ=1.9, and −0.4≤ɛ≤0.4, have been expressed by suitable dimensionless parameters. A correlation for the optimal dimensions of a constant and variable profile fins is presented in terms of reduced heat-transfer rate. It is found that a (quadratic) hyperbolic circular fin with n=2 gives an optimum performance. The effect of radiation on the fin performance is found to be considerable for fins operating at higher base temperatures, whereas the effect of variable thermal conductivity on the optimal dimensions is negligible for the variable profile fin. It is also observed, in general, that the optimal fin length and the optimal fin base thickness are greater when compared to constant fin thickness. Received on 22 February 1999  相似文献   

12.
When a crack Γ s propagates in an elastic medium the stress intensity factors evolve with the tip x(s) of Γ s . In this paper we derive formulae which describe the evolution of these stress intensity factors for a homogeneous isotropic elastic medium under plane strain conditions. Denoting by ψ=ψ(x,s) the stress potential (ψ is biharmonic and has zero traction along the crack Γ s ) and by κ(s) the curvature of the crack at the tip x(s), we prove that the stress intensity factors A 1(s), A 2(s), as functions of s, satisfy:
where , are stress intensity factors of the tangential derivative of in the polar coordinate system at x(s) with θ=0 in the direction of the crack at x(s). The case of antiplane shearing is also briefly considered; in this case ψ is harmonic.  相似文献   

13.
This paper is motivated by the works of Dickinson et al. (Science 284:1954–1960, 1999) and Sun and Tang (J Exp Biol 205:55–70, 2002) which provided two different perspectives on the influence of wing–wake interaction (or wake capture) on lift generation during flapping motion. Dickinson et al. (Science 284:1954–1960, 1999) hypothesize that wake capture is responsible for the additional lift generated at the early phase of each stroke, while Sun and Tang (J Exp Biol 205:55–70, 2002) believe otherwise. Here, we take a more fundamental approach to study the effect of wing–wake interaction on the aerodynamic force generation by carrying out simultaneous force and flow field measurements on a two-dimensional wing subjected to two different types of motion. In one of the motions, the wing at a fixed angle of attack was made to follow a motion profile described by “acceleration-constant velocity-deceleration”. Here, the wing was first linearly accelerated from rest to a predetermined maximum velocity and remains at that speed for set duration before linearly decelerating to a stop. The acceleration and deceleration phase each accounted for only 10% of the stroke, and the stroke covered a total distance of three chord lengths. In another motion, the wing was subjected to the same above-mentioned movement, but in a back and forth manner over twenty strokes. Results show that there are two possible outcomes of wing–wake interaction. The first outcome occurs when the wing encounters a pair of counter-rotating wake vortices on the reverse stroke, and the induced velocity of these vortices impinges directly on the windward side of the wing, resulting in a higher oncoming flow to the wing, which translates into a higher lift. Another outcome is when the wing encounters one vortex on the reverse stroke, and the close proximity of this vortex to the windward surface of the wing, coupled with the vortex suction effect (caused by low pressure region at the center of the vortex), causes the net force on the wing to decrease momentarily. These results suggest that wing–wake interaction does not always lead to lift enhancement, and it can also cause lift reduction. As to which outcome prevails depend very much on the flapping motion and the timing of the reverse stroke.  相似文献   

14.
The present study deals with the experimental investigations of static pressure and mean velocity fields obtained as a result of the interaction of two plane turbulent jets at impingement angles of α equal to 30° and 45°, with an additional central jet in a confined space. The investigation is carried out for the velocity ratios of U c/U o=1.0, 2.0 and 3.0, where U c and U o are the velocities in the central plane at the exit of the central jet and the outer jets, respectively. The introduction of the central jet alters the various recirculation zones present in the flow field for all the cases considered above. Also, the change in the velocity ratio U c/U o has a significant effect on the pressure and mean velocity flow fields. Flow visualisation results are presented which give a better physical insight into the flow field considered. Received: 26 July 1999/Accepted: 14 February 2000  相似文献   

15.
Edge fracture is an instability of cone-plate and parallel plate flows of viscoelastic liquids and suspensions, characterised by the formation of a `crack' or indentation at a critical shear rate on the free surface of the liquid. A study is undertaken of the theoretical, experimental and computational aspects of edge fracture. The Tanner-Keentok theory of edge fracture in second-order liquids is re-examined and is approximately extended to cover the Criminale-Ericksen-Filbey (CEF) model. The second-order theory shows that the stress distribution on the semi-circular crack is not constant, requiring an average to be taken of the stress; this affects the proportionality constant, K in the edge fracture equation −N 2c = KΓ/a, where N 2c is the critical second normal stress difference, Γ is the surface tension coefficient and a is the fracture diameter. When the minimum stress is used, K = 2/3 as found by Tanner and Keentok (1983). Consideration is given to the sources of experimental error, including secondary flow and slip (wall effect). The effect of inertia on edge fracture is derived. A video camera was used to record the inception and development of edge fracture in four viscoelastic liquids and two suspensions. The recorded image was then measured to obtain the fracture diameter. The edge fracture phenomenon was examined to find its dependence on the physical dimensions of the flow (i.e. parallel plate gap or cone angle), on the surface tension coefficient, on the critical shear rate and on the critical second normal stress difference. The critical second normal stress difference was found to depend on the surface tension coefficient and the fracture diameter, as shown by the theory of Tanner and Keentok (1983); however, the experimental data were best fitted by the equation −N 2c = 1.095Γ/a. It was found that edge fracture in viscoelastic liquids depends on the Reynolds number, which is in good agreement with the inertial theory of edge fracture. Edge fracture in lubricating grease and toothpaste is broadly consistent with the CEF model of edge fracture. A finite volume method program was used to simulate the flow of a viscoelastic liquid, obeying the modified Phan-Thien-Tanner model, to obtain the velocity and stress distribution in parallel plate flow in three dimensions. Stress concentrations of the second normal stress difference (N 2) were found in the plane of the crack; the velocity distribution shows a secondary flow tending to aid crack formation if N 2 is negative, and a secondary flow tending to suppress crack formation if N 2 is positive. Received: 4 January 1999 Accepted: 19 May 1999  相似文献   

16.
The periodic formation of vortex rings in the developing region of a round jet subjected to high-amplitude acoustic forcing is investigated with High-Speed Particle Image Velocimetry. Harmonic velocity oscillations ranging from 20 to 120% of the mean exit velocity of the jet was achieved at several forcing frequencies determined by the acoustic response of the system. The time-resolved history of the formation process and circulation of the vortex rings are evaluated as a function of the forcing conditions. Overall, high-amplitude forcing causes the shear layers of the jet to breakup into a train of large-scale vortex rings, which share many of the features of starting jets. Features of the jet breakup such as the roll-up location and vortex size were found to be both amplitude and frequency dependent. A limiting time-scale of t/T ≈ 0.33 based on the normalized forcing period was found to restrict the growth of a vortex ring in terms of its circulation for any given arrangement of jet forcing conditions. In sinusoidally forced jets, this time-scale corresponds to a kinematic constraint where the translational velocity of the vortex ring exceeds the shear layer velocity that imposes pinch-off. This kinematic constraint results from the change in sign in the jet acceleration between t = 0 and t = 0.33T. However, some vortex rings were observed to pinch-off before t = 0.33T suggesting that they had acquired their maximum circulation. By invoking the slug model approximations and defining the slug parameters based on the experimentally obtained time- and length-scales, an analytical model based on the slug and ring energies revealed that the formation number for a sinusoidally forced jet is L/D ≈ 4 in agreement with the results of Gharib et al. (J Fluid Mech 360:121–140, 1998).  相似文献   

17.
Tip gap height effects on aerodynamic losses downstream of a cavity squealer tip have been investigated in a linear turbine cascade for power generation, in comparison with plane tip results. Three-dimensional flow fields are measured with a five-hole probe for tip gap height-to-chord ratios of h/c = 0.5, 1.0, 1.5 and 2.0%. The cavity squealer tip has a full length squealer with its rim height-to-chord ratio of 5.51%. For a fixed value of h/c, the tip leakage vortex for the cavity squealer tip is always weaker than that for the plane tip, and the flow field in the passage vortex region for the cavity squealer tip is less influenced by the tip leakage flow than that for the plane tip. For the cavity squealer tip, there is no appreciable change in local aerodynamic loss with h/c in the passage vortex region, but local aerodynamic loss in the tip leakage vortex region increases with h/c. The roles of the cavity squealer tip in reducing aerodynamic loss in comparison with the plane tip case are twofold: (1) the cavity squealer tip decreases the leakage flow discharge in the region from the leading edge to the mid-chord, which leads to an aerodynamic loss reduction in the passage vortex region and (2) it also decreases the leakage flow discharge downstream of the mid-chord, which results in an aerodynamic loss reduction in the tip leakage vortex region.  相似文献   

18.
In this article, we investigate the response of a thin superconducting shell to an arbitrary external magnetic field. We identify the intensity of the applied field that forces the emergence of vortices in minimizers, the so-called first critical field H c1 in Ginzburg–Landau theory, for closed simply connected manifolds and arbitrary fields. In the case of a simply connected surface of revolution and vertical and constant field, we further determine the exact number of vortices in the sample as the intensity of the applied field is raised just above H c1. Finally, we derive via Γ-convergence similar statements for three-dimensional domains of small thickness, where in this setting point vortices are replaced by vortex lines.  相似文献   

19.
The two-dimensional interaction of a single vortex with a thin symmetrical airfoil and its vortex wake has been investigated in a low turbulence wind tunnel having velocity of about 2 m/s in the measuring section. The flow Reynolds number based on the airfoil chord length was 4.5 × 103. The investigation was carried out using a smoke-wire visualization technique with some support of standard hot-wire measurements. The experiment has proved that under certain conditions the vortex-airfoil-wake interaction leads to the formation of new vortices from the part of the wake positioned closely to the vortex. After the formation, the vortices rotate in the direction opposite to that of the incident vortex.List of symbols c test airfoil chord - C vortex generator airfoil chord - TA test airfoil - TE test airfoil trailing edge - TE G vortex generator airfoil trailing edge - t dimensionless time-interval measured from the vortex passage by the test airfoil trailing edge: gDt=(T-T- TEU/c - T time-interval measured from the start of VGA rotation - U free stream velocity - U vortex induced velocity fluctuation - VGA vortex generator airfoil - y distance in which the vortex passes the test airfoil - Z vortex circulation coefficient: Z=/(U · c/2) - vortex generator airfoil inclination angle - vortex circulation - vortex strength: =/2  相似文献   

20.
In this paper the combined effect of two mechanisms for lift enhancement at low Reynolds numbers are considered, wing oscillations and wing flexibility. The force, deformation and flow fields of rigid and flexible low aspect ratio (AR=3) and high aspect ratio (AR=6) wings oscillating at a fixed post-stall angle of attack of 15° and amplitude of 15% of chord are measured. The force measurements show that flexibility can increase the time-averaged lift coefficient significantly. For low aspect ratio wings the maximum lift coefficient across all Strouhal numbers was Cl=1.38 for the rigid wing as opposed to Cl=2.77 for the flexible wing. Very similar trends were observed for the high aspect ratio wings. This increase is associated with significant deformation of the wing. The root is sinusoidally plunged with small amplitude but this motion is amplified along the span resulting in a larger tip motion but with a phase lag. The amount it is amplified strongly depends on Strouhal number. A Strouhal number of Src=1.5 was selected for detailed flow field measurements due to it being central to the high-lift region of the flexible wings, producing approximately double the lift of the rigid wing. For this Strouhal number the rigid wings exhibit a Leading Edge Vortex (LEV) ring. This is where the clockwise upper-surface LEV pairs with the counter-clockwise lower-surface LEV to form a vortex ring that self-advects upstream and away from the wing's upper surface. Conversely the deformation of the flexible wings inhibits the formation of the LEV ring. Instead a strong upper-surface LEV forms during the downward motion and convects close to the airfoil upper surface thus explaining the significantly higher lift. These measurements demonstrate the significant gains that can be achieved through the combination of unsteady aerodynamics with flexible structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号