首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our laboratory, we have applied the tools of nuclear magnetic resonance (NMR) spectroscopy and molecular genetics to investigate the structural and dynamic properties of membrane-associated proteins and their interactions with membrane components. There are two general classes of membrane proteins, i.e., intrinsic and peripheral ones. For the intrinsic membrane proteins, we have chosen the membranebound D-lactate dehydrogenase (D-LDH) of Escherichia coli as a model to study protein-lipid interactions in membranes. D-LDH is a respiratory enzyme of molecularweight 65, 000 containing flavin adenine dinucleotide (FAD) as a cofactor. The activity of purified D-LDH is enhanced up to 100-fold by lipids and detergents. The gene for D-LDH has been sequenced, and production of the enzyme amplified up to 300-times normal levels. We have biosynthetically incorporated 5-fluorotryptophan (5F-Trp) into D-LDH and studied the five Trp residues by 19F-NMR spectroscopy. In order to gain additional information using 19F-NMR, site-specific, oligonucleotide-directed mutagenesis has been used to insert a sixth Trp into D-LDH at various positions throughout the 571-amino acid chain. These mutant D-LDHs are being characterized biochemically and through NMR. For peripheral membrane proteins, we have chosen two periplasmic binding proteins, histidine-binding protein J (J protein) of Salmonella Typhimurium and glutamine-binding protein (GlnBP) of E. coli as models to investigate the structure-function relationship in periplasmic binding protein-mediated active transport systems. These two proteins both have molecular weights of approximately 25, 000. By using mutant J proteins and GlnBPs and site-specific, oligonucleotide-directed mutagenesis techniques, we have assigned several resonances to specific amino acid residues. We are investigating the relationship between ligand-induced conformational changes in these two proteins and their roles in the active transport of ligand across the cell membrane. We have found that a combination of isotopic labeling, biochemistry, molecular biology, and NMR is a very useful approach to investigate various interactions of membrane-associated protein systems.  相似文献   

2.
In this work, we present theoretical and experimental studies of nanofluidic channels as a potential biosensor for measuring rapid protein complex formation. Using the specific properties offered by nanofluidics, such as the decrease of effective diffusion of biomolecules in confined spaces, we are able to monitor the binding affinity of two proteins. We propose a theoretical model describing the concentration profile of proteins in a nanoslit and show that a complex composed by two bound biomolecules induces a wider diffusion profile than a single protein when driven through a nanochannel. To validate this model experimentally, we measured the increase of the fluorescent diffusion profile when specific biotinylated dextran was added to fluorescent streptavidin. We report here a direct and relatively simple technique to measure the affinity between proteins. Figure We present theoretical and experimental studies of nanofluidic channels as potential biosensors for rapidly measuring protein complex formation. Our system is based on steady-state diffusion effects which are observed inside a nanoslit.  相似文献   

3.
Targeting protein surfaces involved in protein–protein interactions by using supramolecular chemistry is a rapidly growing field. NMR spectroscopy is the method of choice to map ligand‐binding sites with single‐residue resolution by amide chemical shift perturbation and line broadening. However, large aromatic ligands affect NMR signals over a greater distance, and the binding site cannot be determined unambiguously by relying on backbone signals only. We herein employed Lys‐ and Arg‐specific H2(C)N NMR experiments to directly observe the side‐chain atoms in close contact with the ligand, for which the largest changes in the NMR signals are expected. The binding of Lys‐ and Arg‐specific supramolecular tweezers and a calixarene to two model proteins was studied. The H2(C)N spectra track the terminal CH2 groups of all Lys and Arg residues, revealing significant differences in their binding kinetics and chemical shift perturbation, and can be used to clearly pinpoint the order of ligand binding.  相似文献   

4.
The presence of a disulfide bridge in liver bile acid binding protein (L-BABP/S-S) allows for site-selective binding of two bile acids, glycochenodeoxycholic (GCDA) and glycocholic acid (GCA), differing only in the presence of a hydroxyl group. The protein form devoid of the disulfide bridge (L-BABP) binds both bile salts without discriminating ability. We investigate the determinants of the molecular recognition process in the formation of the heterotypic L-BABP/S-S complex with GCA and GCDA located in the superficial and inner protein sites, respectively. The comparison of the NMR spectroscopy structure of heterotypic holo L-BABP/S-S, the first reported for this protein family, with that of the homotypic L-BABP complex demonstrates that the introduction of a S-S link between adjacent strands changes the conformation of three key residues, which function as hot-spot mediators of molecular discrimination. The favoured χ(1) rotameric states (t, g(+) and g(-) for E99, Q100 and E109 residues, respectively) allow the onset of an extended intramolecular hydrogen-bond network and the consequent stabilisation of the side-chain orientation of a buried histidine, which is capable of anchoring a specific ligand.  相似文献   

5.
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.  相似文献   

6.
Folded proteins can be translocated across biological membranes via the Tat machinery. It has been shown in vitro that these Tat substrates can interact with membranes prior to translocation. Here we report a monolayer and infrared reflection-absorption spectroscopic (IRRAS) study of the initial states of this membrane interaction, the binding to a lipid monolayer at the air/water interface serving as a model for half of a biological membrane. Using the model Tat substrate HiPIP (high potential iron-sulfur protein) from Allochromatium vinosum, we found that the precursor preferentially interacts with monolayers of negatively charged phospholipids. The signal peptide is essential for the interaction of the precursor protein with the monolayer because the mature HiPIP protein showed no interaction with the lipid monolayer. However, the individual signal peptide interacted differently with the monolayer compared to the complete precursor protein. IRRA spectroscopy indicated that the individual signal peptide forms mainly aggregated β-sheet structures. This β-sheet formation did not occur for the signal peptide when being part of the full length precursor. In this case it adopted an α-helical structure upon membrane insertion. The importance of the signal peptide and the mature domain for the membrane interaction is discussed in terms of current ideas of Tat substrate-membrane interactions.  相似文献   

7.
Topology-based interaction potentials are simplified models that use the native contacts in the folded structure of a protein to define an energetically unfrustrated folding funnel. They have been widely used to analyze the folding transition and pathways of different proteins through computer simulations. Obviously, they need a reliable, experimentally determined folded structure to define the model interactions. In structures elucidated through NMR spectroscopy, a complex treatment of the raw experimental data usually provides a series of models, a set of different conformations compatible with the available experimental data. Here, we use an efficient coarse-grained simulation technique to independently consider the contact maps from every different NMR model in a protein whose structure has been resolved by the use of NMR spectroscopy. For lambda-Cro repressor, a homodimeric protein, we have analyzed its folding characteristics with a topology-based model. We have focused on the competition between the folding of the individual chains and their binding to form the final quaternary structure. From 20 different NMR models, we find a predominant three-state folding behavior, in agreement with experimental data on the folding pathway for this protein. Individual NMR models, however, show distinct characteristics, which are analyzed both at the level of the interplay between tertiary/quaternary structure formation and also regarding the thermal stability of the tertiary structure of every individual chain.  相似文献   

8.
Engen JR 《The Analyst》2003,128(6):623-628
Analysis of protein complexes using hydrogen exchange (HX) combined with high resolution electrospray mass spectrometry (MS) is demonstrated. HX MS offers the possibility to analyze the strength of binding in protein complexes, to identify regions that undergo binding induced structural changes, and to study the nature (hydrophobic, electrostatic, etc.) of binding between two or more proteins. In the current work, a heteromeric complex containing UBC9 (an E2 conjugating enzyme) and SUMO-1 (a ubiquitin-like modifier) was investigated by incubating the complex in D2O and measuring the amount of deuterium incorporation with MS. SUMO-1 had significant changes in deuterium levels when bound to UBC9. In contract, few or no changes in deuterium levels were detected in UBC9 when part of the complex, even at the binding interface. Titrations were used to estimate the binding constant for the complex. The nature of the interface was probed by creating a site-directed mutant form of UBC9. The mutant form showed no detectable binding to SUMO-1 and thereby suggested that binding between these two proteins is primarily electrostatically driven. This application of HX MS demonstrates its value in the study of protein complexes and protein machinery.  相似文献   

9.
Protein nanobodies have been used successfully as surrogates for unstable G‐proteins in order to crystallize G‐protein‐coupled receptors (GPCRs) in their active states. We used molecular dynamics (MD) simulations, including metadynamics enhanced sampling, to investigate the similarities and differences between GPCR–agonist ternary complexes with the α‐subunits of the appropriate G‐proteins and those with the protein nanobodies (intracellular binding partners, IBPs) used for crystallization. In two of the three receptors considered, the agonist‐binding mode differs significantly between the two alternative ternary complexes. The ternary‐complex model of GPCR activation entails enhancement of ligand binding by bound IBPs: Our results show that IBP‐specific changes can alter the agonist binding modes and thus also the criteria for designing GPCR agonists.  相似文献   

10.
Solid-state NMR spectroscopy is being used to determine the structures of membrane proteins involved in the regulation of apoptosis and ion transport. The Bcl-2 family includes pro- and anti-apoptotic proteins that play a major regulatory role in mitochondrion-dependent apoptosis or programmed cell death. The NMR data obtained for (15)N-labeled anti-apoptotic Bcl-xL in lipid bilayers are consistent with membrane association through insertion of the two central hydrophobic alpha-helices that are also required for channel formation and cytoprotective activity. The FXYD family proteins regulate ion flux across membranes, through interaction with the Na(+), K(+)-ATPase, in tissues that perform fluid and solute transport or that are electrically excitable. We have expressed and purified three FXYD family members, Mat8 (mammary tumor protein), CHIF (channel-inducing factor) and PLM (phospholemman), for structure determination by NMR in lipids. The solid-state NMR spectra of Bcl-2 and FXYD proteins, in uniaxially oriented lipid bilayers, give the first view of their membrane-associated architectures.  相似文献   

11.
Thiostrepton and micrococcin inhibit protein synthesis by binding to the L11 binding domain (L11BD) of 23S ribosomal RNA. The two compounds are structurally related, yet they produce different effects on ribosomal RNA in footprinting experiments and on elongation factor-G (EF-G)-dependent GTP hydrolysis. Using NMR and an assay based on A1067 methylation by thiostrepton-resistance methyltransferase, we show that the related thiazoles, nosiheptide and siomycin, also bind to this region. The effect of all four antibiotics on EF-G-dependent GTP hydrolysis and EF-G-GDP-ribosome complex formation was studied. Our NMR and biochemical data demonstrate that thiostrepton, nosiheptide, and siomycin share a common profile, which differs from that of micrococcin. We have generated a three-dimensional (3D) model for the interaction of thiostrepton with L11BD RNA. The model rationalizes the differences between micrococcin and the thiostrepton-like antibiotics interacting with L11BD.  相似文献   

12.
The design rationale, synthesis, and preliminary radiolabeling evaluation of new N,N,O-type pyridyl- tert-nitrogen-phenol ligands for the [M(CO) 3] (+) core, where M = (99m)Tc or Re, are described. The capability of the ligands to bind this technetium core is initially demonstrated by using the cold surrogate [Re(CO) 3] (+). NMR studies of the relevant rhenium tricarbonyl complexes indicate the formation of either a monomeric or a possible dimeric complex with each phenolic O atom bridging between two metal centers. Labeling with [ (99m)Tc(CO) 3] (+) provided further insight into the differences in complex formation on the dilute, no carrier added, level compared to the macroscopic scale at which the Re (I) counterparts were made. These new tridentate, monoanionic ligands are competent chelates in binding the [ (99m)Tc(CO) 3] (+) core because radiolabeling yields ranged from 85 to 99% and the resulting complexes were stable to cysteine and histidine challenges for as long as 24 h.  相似文献   

13.
Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well‐characterized folding upon binding to dynamic fuzzy complexes. To date, most studies concern the binding of an IDP to a structured protein, while the interaction between two IDPs is poorly understood. In this study, NMR, smFRET, and molecular dynamics (MD) simulation are combined to characterize the interaction between two IDPs, the C‐terminal domain (CTD) of protein 4.1G and the nuclear mitotic apparatus (NuMA) protein. It is revealed that CTD and NuMA form a fuzzy complex with remaining structural disorder. Multiple binding sites on both proteins were identified by molecular dynamics and mutagenesis studies. This study provides an atomic scenario in which two IDPs bearing multiple binding sites interact with each other in dynamic equilibrium. The combined approach employed here could be widely applicable for investigating IDPs and their dynamic interactions.  相似文献   

14.
The presence of a disulfide bridge in liver bile acid binding protein (L‐BABP/S‐S) allows for site‐selective binding of two bile acids, glycochenodeoxycholic (GCDA) and glycocholic acid (GCA), differing only in the presence of a hydroxyl group. The protein form devoid of the disulfide bridge (L‐BABP) binds both bile salts without discriminating ability. We investigate the determinants of the molecular recognition process in the formation of the heterotypic L‐BABP/S‐S complex with GCA and GCDA located in the superficial and inner protein sites, respectively. The comparison of the NMR spectroscopy structure of heterotypic holo L‐BABP/S‐S, the first reported for this protein family, with that of the homotypic L‐BABP complex demonstrates that the introduction of a S–S link between adjacent strands changes the conformation of three key residues, which function as hot‐spot mediators of molecular discrimination. The favoured χ1 rotameric states (t, g+ and g? for E99, Q100 and E109 residues, respectively) allow the onset of an extended intramolecular hydrogen‐bond network and the consequent stabilisation of the side‐chain orientation of a buried histidine, which is capable of anchoring a specific ligand.  相似文献   

15.
The blood coagulation cascade can be considered as a system of well-orchestrated protein activation reactions involving and leading to the formation of large macromolecular assemblies. NMR investigations performed during the last six years have focused on the structural, motional and binding properties of some protein domains and interfaces critical for the formation of these protein complexes, outlining sophisticated intermolecular adaptations. The studied protein domains are either single molecules or covalently-linked heterodimers of the epidermal growth factor (EGF) homology domains, calcium-binding EGF domains and gamma-carboxyglutamic(Gla)-containing domains responsible for calcium-dependent binding to cell membranes. The characterized binding interfaces have included those between thrombin and fibrinogen, between thrombin and thrombomodulin, between factor VIIIa and the cell membrane, between tissue factor and factor VIIa, and most recently between factor Va and prothrombin. The obtained results indicate that the regulation of blood coagulation by protein and low molecular weight cofactors may involve a significant degree of protein folding transitions with changes in molecular and conformational motions coupled to enzymatic activities. This new level of complexity of the molecular processes controlling coagulation may lead to novel strategies for the development of more effective therapeutic anticoagulants.  相似文献   

16.
When two monolayers of a non-lamellar lipid are brought together to form a planar bilayer membrane, the resulting structure is under elastic stress. This stress changes the membrane’s physical properties and manifests itself in at least two biologically relevant functional aspects. First, by modifying the energetics of hydrophobic inclusions, it influences protein–lipid interactions. The immediate consequences are seen in several effects that include changes in conformational equilibrium between different functional forms of integral proteins and peptides, membrane-induced interactions between proteins, and partitioning of proteins between different membranes and between the bulk and the membrane. Secondly, by changing the energetics of spontaneous formation of non-lamellar local structures, lipid packing stress influences membrane stability and fusion.  相似文献   

17.
Integral membrane proteins in bacteria are co‐translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N‐terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C‐terminal membrane targeting sequence. The central A domain binds to the translocon non‐specifically and maintains disorder. Translocon targeting and binding of the A domain is driven by electrostatic interactions. The intrinsically disordered A domain tethers FtsY to the translocon, and because of its flexibility, allows the FtsY NG domain to scan a large area for binding to the NG domain of ribosome‐bound SRP, thereby promoting the formation of the quaternary transfer complex at the membrane.  相似文献   

18.
Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full‐length membrane‐bound P450 and its redox partner cytochrome b5 (cytb5) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane‐bound complex in model membranes renders high‐resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450–cytb5 complex in peptide‐based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450–cytb5 complex in the nanodisc. This is the first successful demonstration of a protein–protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane‐bound protein complexes.  相似文献   

19.
Viral membrane proteins are prime targets in combatting infection. Still, the determination of their structure remains a challenge, both with respect to sample preparation and the need for structural methods allowing for analysis in a native‐like lipid environment. Cell‐free protein synthesis and solid‐state NMR spectroscopy are promising approaches in this context, the former with respect to its great potential in the native expression of complex proteins, and the latter for the analysis of membrane proteins in lipids. Herein, we show that milligram amounts of the small envelope protein of the duck hepatitis B virus (DHBV) can be produced by cell‐free expression, and that the protein self‐assembles into subviral particles. Proton‐detected 2D NMR spectra recorded at a magic‐angle‐spinning frequency of 110 kHz on <500 μg protein show a number of isolated peaks with line widths comparable to those of model membrane proteins, paving the way for structural studies of this protein that is homologous to a potential drug target in HBV infection.  相似文献   

20.
Solid‐state NMR spectroscopy is an emerging tool for structural studies of crystalline, membrane‐associated, sedimented, and fibrillar proteins. A major limitation for many studies is still the large amount of sample needed for the experiments, typically several isotopically labeled samples of 10–20 mg each. Here we show that a new NMR probe, pushing magic‐angle sample rotation to frequencies around 100 kHz, makes it possible to narrow the proton resonance lines sufficiently to provide the necessary sensitivity and spectral resolution for efficient and sensitive proton detection. Using restraints from such spectra, a well‐defined de novo structure of the model protein ubiquitin was obtained from two samples of roughly 500 μg protein each. This proof of principle opens new avenues for structural studies of proteins available in microgram, or tens of nanomoles, quantities that are, for example, typically achieved for eukaryotic membrane proteins by in‐cell or cell‐free expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号