首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Highly ordered silicon nanorod(Si NR)arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching.It is demonstrated that the key to achieving a high-quality metal mask is to construct a non-close-packed template that can be removed with negligible damage to the mask.Hydrophobicity of Si NR arrays of different geometries is also studied.It is shown that the nanorod structures are effectively quasi-hydrophobic with a contact angle as high as 142°,which would be useful in self-cleaning nanorod-based device applications.  相似文献   

2.
The phase behaviors in a binary mixture of diblock copolymers confined between two parallel walls are investigated by using a cell dynamics simulation of the time-dependent Ginzburg-Landau theory.The morphological dependence of the wall-block interaction and the distance between walls(confinement degree) has been systematically studied,and the effect of repulsive interactions between different monomers is also discussed.It is interesting that multiple novel morphological transitions are observed by changing these factors,and various multilayered sandwich structures are formed in the mixture.Furthermore,the parametric dependence and physical reasons for the microdomain growth and orientational order transitions are discussed.From the simulation,we find that much richer morphologies can form in a binary mixture of diblock copolymers than those in a pure diblock copolymer.Our results provide an insight into the phase behaviors under parallel wall confinement and may provide guidance for experimentalists.This model system can also give a simple way to realize orientational order transition in soft materials through confinement.  相似文献   

3.
Orderly aligned ZnO nanorod arrays were grown by the ultrafast laser assisted ablation deposition method. These nanorod arrays were further used to make efficient p-n heterojunction photodetector arrays, which have the potential to have nanoscale spatial resolution for imaging, unique incident polarization discrimination capability, and much improved quantum efficiency as well as detection sensitivity. Both front- and back-illumination photodetection schemes were demonstrated by growing those ZnO nanorod arrays on p-type silicon and p-type Zn0.9Mg0.1O-coated Al2O3 (0 0 0 1) substrates, respectively. Typical diode rectification behavior and photosensitivity were observed in both designs through I-V and photocurrent measurements.  相似文献   

4.
The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections(regular triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period LL. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period LLare observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel’s cross section. In the case of triangle-shaped cross sections, stacked parallel lamellae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shaped cross sections, concentric lamellae are the signature morphology for strongly selective surfaces, whereas for weakly selective surfaces, stacked parallel lamellae, and several types of folding lamellae are obtained in the case of square-shaped cross sections, and stacked parallel lamellae are the majority morphologies in the case of ellipse-shaped cross sections when the length of the minor axis is commensurate with the bulk lamellar period. The mean-square endto-end distance, the average contact number between different species and the surface concentration of the A-monomers are computed to elucidate the mechanisms of the formation of the different morphologies. It is found that the resulting morphology is a consequence of competition among the chain stretching, interfacial energy, and surface energy. Our results suggest that the self-assembled morphology and the orientation of lamellae can be manipulated by the shape, the size, and the surface property of the confining channels.  相似文献   

5.
Oriented ZnO nanorod arrays were successfully prepared on transparent conductive substrates by seed-layer-free electrochemical deposition in solution of Zn(NO3)2 at a low temperature of 70 °C without using any catalysts, additives, and additional seed crystals. The effects of the Zn(NO3)2 concentration, deposition time and applied current on the localized nanorod arrays are investigated. X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were used to characterize the structures and the morphologies of ZnO nanorod arrays. The heights and diameters of ZnO nanorods can be tuned by controlling the electrodeposition parameters.  相似文献   

6.
TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned Tit2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared Tit2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.  相似文献   

7.
The superhydrophobic ZnO surface possessing water adhesive reversibility is fabricated by a facile method. The as-prepared surface is low adhesive; however, after being irradiated by UV light through a photomask, it becomes highly adhesive. A water droplet can suspend on the irradiated surface. Further annealing the irradiated surface, water droplets can roll on the surface again. Reversible transition between the high adhesive pinning state and low adhesive rolling state can be realized simply by UV illumination and heat treatment alternately. The adhesion transition is attributed to the adsorption/desorption of surface hydroxyl groups and the organic chains rearrangement on the top surfaces of ZnO.  相似文献   

8.
The effect of the median selective solution on the lamellar, spherical and gyroid structures is studied. The self-consistent field equations of the diblock copolymer solution are solved by using the reciprocal space method. It is shown that the spherical and gyroid phases have the lowest free energy in the certain range of the solution concentration. Furthermore, the phase diagram of the ordered structures in the diblock copolymer solution with the median selective solvent is calculated, which is consistent with the experimental results. Supported by the National Natural Science Foundation of China (Grant Nos. 10834014, 10674173, and 30770517) and the National Basic Research Program of China (Grant No. 2009CB930704)  相似文献   

9.
We used density functional theory (DFT) to investigate the formation of symmetric and asymmetric thin film of diblock copolymer melts by tuning the size of the slit confinement. In this work, the DFT contains a modified fundamental measure theory for the excluded volume effect and the first-order thermodynamic perturbation theory for the chain connectivity as well as the mean-field approximation for van der Waals attraction. For the symmetric A8B8 linear copolymers, it is observed that with the increase of the width of the slit, morphologies of copolymer in the slits undergo an evolution of “non-layered structure → ABA → ABAB → BABAB → disordered structure”, while the morphologies of asymmetric copolymer with the increase of the width of the slit exhibit a process of “ABA → ABAB → ABABA → ABABAB lamellar structure” in all the cases studied. It suggests that the ratio of two blocks of a copolymer plays an important role on the structure of copolymer film. By adjusting the ratio of two blocks, some copolymer films with novel morphologies, including asymmetric ABAB lamellar structure, can be tailored. Furthermore, it is found that the bonding orientation distribution introduced into the DFT can act as a criterion to identify the disordered and ordered states of copolymers.  相似文献   

10.
The cross section of a diblock copolymer in the cylindrical phase is made up of a large number of microdomains of small discs with high concentration of the minority monomers. Often several ring like microdomains appear among the discs. We show that a ring like structure may exist as a stable solution of a free boundary problem derived from the Ohta-Kawasaki theory of diblock copolymers. The existence of such a stable, single ring structure explains why rings exist for a long period of time before they eventually disappear or become discs in a diblock copolymer. A variant of Lyapunov-Schmidt reduction process is carried out that rigorously reduces the free boundary problem to a finite-dimensional problem. The finite-dimensional problem is solved numerically. A stability criterion on the parameters determines whether the ring solution is stable.  相似文献   

11.
Single crystalline CdTe branched nanowires and well-aligned nanorod arrays were simultaneously synthesized by a simple chemical vapor deposition (CVD) technique. X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and selected area electronic diffraction (SAED) were used to study the crystalline structure, composition and morphology of different samples. Vapor-liquid-solid (VLS) and vapor-solid (VS) processes were proposed for the formation of the CdTe branched nanowires and nanorod arrays, respectively. As-grown CdTe nanorod arrays show a strong red emission band centered at about 620 nm, which can be well fitted by two Gaussian curves centered at 610 nm and 635 nm, respectively.  相似文献   

12.
A numerical method in Fourier-space is developed to solve the polymeric self-consistent field equations. The method does not require a priori symmetric information. More significantly, periodic structure can be adjusted automatically during the iteration process. In this article, we apply our method to AB linear diblock copolymer melt, thus reproduce all known stable phases, and reveal some meta-stable phases. It is worthy to point out that we also give an efficient strategy to estimating initial values for diblock copolymer system. Finally, by comparing with Matsen–Schick’s method, we show some advantages of our method.  相似文献   

13.
14.
Well-aligned ZnO nanorod array, fabricated on conductive indium-tin-oxide (ITO) substrate by wet chemical bath deposition (CBD) method, was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Surface photovoltage (SPV) technique was employed to study the photovoltaic properties of the copper-phthalocyanine (CuPc) and ZnO nanorod array system affected by ethanol. Prior to ethanol adsorption, two pronounced SPV response bands were exhibited for this system in the range 300-410 and 540-760 nm, respectively. Post-adsorption measurements reveal that the SPV intensity of the former band is enhanced, while that of the latter band is suppressed if ethanol was used to modify CuPc surface. Moreover, both of the SPV intensity of two response bands is enhanced if ethanol was used to modify ZnO and CuPc interface. Mechanisms of these phenomena were suggested.  相似文献   

15.
《Current Applied Physics》2014,14(9):1263-1272
We present a robust and accurate numerical algorithm for calculating energy-minimizing wavelengths of equilibrium states for diblock copolymers. The phase-field model for diblock copolymers is based on the nonlocal Cahn–Hilliard equation. The model consists of local and nonlocal terms associated with short- and long-range interactions, respectively. To solve the phase-field model efficiently and accurately, we use a linearly stabilized splitting-type scheme with a semi-implicit Fourier spectral method. To find energy-minimizing wavelengths of equilibrium states, we take two approaches. One is to obtain an equilibrium state from a long time simulation of the time-dependent partial differential equation with varying periodicity and choosing the energy-minimizing wavelength. The other is to directly solve the ordinary differential equation for the steady state. The results from these two methods are identical, which confirms the accuracy of the proposed algorithm. We also propose a simple and powerful formula: h = L1/m, where h is the space grid size, L1 is the energy-minimizing wavelength, and m is the number of the numerical grid steps in one period of a wave. Two- and three-dimensional numerical results are presented validating the usefulness of the formula without trial and error or ad hoc processes.  相似文献   

16.
InGaN/GaN epilayers,which are grown on sapphire substrates by the metal-organic chemical-vapour deposition(MOCVD) method,are formed into nanorod arrays using inductively coupled plasma etching via self-assembled Ni nanomasks.The formation of nanorod arrays eliminates the tilt of the InGaN(0002) crystallographic plane with respect to its GaN bulk layer.Photoluminescence results show an apparent S-shaped dependence on temperature.The light extraction efficiency and intensity of photoluminescence emission at low temperature of less than 30 K for the nanorod arrays are enhanced by the large surface area,which increases the quenching effect because of the high density of surface states for the temperature above 30 K.Additionally,a red-shift for the InGaN/GaN nanorod arrays is observed due to the strain relaxation,which is confirmed by reciprocal space mapping measurements.  相似文献   

17.
We have studied surface-directed phase separation in thin films of deuterated polystyrene and poly(bromostyrene) (with 22.7% of monomers brominated) using 3He nuclear reaction analysis, dynamic secondary ion mass spectroscopy and atomic force microscopy combined with preferential dissolution. The crossover from competing to neutral surfaces of the critical blend film (cast onto Au) was commenced: polyisoprene-polystyrene diblock copolymers were added and segregated to both surfaces reducing in a tuneable manner the effective interactions. Two main stages of phase evolution are characterised by i) the growth of two surface layers and by ii) the transition from the four-layer to the final bilayer morphology. For increasing copolymer content the kinetics of the first stage is hardly affected but the amplitude of composition oscillations is reduced indicating more fragmented inner layers. As a result, a faster mass flow to the surfaces and an earlier completion of the second stage were observed. The hydrodynamic flow mechanism, driving both stages, is evidenced by nearly linear growth of the surface layer and by mass flow channels extending from the surface layer into the bulk. The final bilayer structure, formed even for the surfaces covered by strongly overlapped copolymers, is indicative of long-range (antisymmetric) surface forces. Received 15 March 2000 and Received in final form 9 February 2001  相似文献   

18.
The self-assembly of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP)/HAuCl4 complexes in solutions is described. A morphological change from spheres to aggregated spheres, and then to vesicles, all of which contain Au precursor within the micellar corona or vesicle shell, can be prepared from an identical diblock copolymer by controlling the solvent selectivity. The possible mechanisms leading to the morphological transitions are also discussed. This may be a simple, facile route for preparation of a desired gold-containing aggregate.  相似文献   

19.
InGaN/GaN epilayers,which are grown on sapphire substrates by the metal-organic chemical-vapour deposition(MOCVD) method,are formed into nanorod arrays using inductively coupled plasma etching via self-assembled Ni nanomasks.The formation of nanorod arrays eliminates the tilt of the InGaN(0002) crystallographic plane with respect to its GaN bulk layer.Photoluminescence results show an apparent S-shaped dependence on temperature.The light extraction efficiency and intensity of photoluminescence emission at low temperature of less than 30 K for the nanorod arrays are enhanced by the large surface area,which increases the quenching effect because of the high density of surface states for the temperature above 30 K.Additionally,a red-shift for the InGaN/GaN nanorod arrays is observed due to the strain relaxation,which is confirmed by reciprocal space mapping measurements.  相似文献   

20.
The simultaneous Ag loaded and N-doped TiO2 hollow nanorod arrays with various contents of silver (Ag/N-THNAs) were successfully synthesized on glass substrates by one-pot liquid phase deposition (LPD) method using ZnO nanorod arrays as template. The catalysts were characterized by Raman spectrum, field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), ultraviolet-vis (UV-vis) absorption spectrum and X-ray photoelectron spectroscopy (XPS). The results suggest that AgNO3 additive in the precursor solutions not only can promote the anatase-to-rutile phase transition, but also influence the amount of N doping in the samples. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The sample exhibited the highest photocatalytic activity under UV light illumination when the AgNO3 concentration in the precursor solution was 0.03 M, due to Ag nanoparticles acting as electron sinks; When the AgNO3 concentration was 0.07 M, the sample performed best under visible light illumination, attributed to the synergetic effects of Ag loading, N doping, and the multiphase structure (anatase/rutile).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号