首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SINGULAR SOLUTIONS OF ANISOTROPIC PLATE WITH AN ELLIPTICAL HOLE OR A CRACK   总被引:2,自引:1,他引:2  
In the present paper, closed form singular solutions for an infinite anisotropic plate with an elliptic hole or crack are derived based on the Stroh-type formalism for the general anisotropic plate. With the solutions, the hoop stresses and hoop moments around the elliptic hole as well as the stress intensity factors at the crack tip under concentrated in-plane stresses and bending moments are obtained. The singular solutions can be used for approximate analysis of an anisotropic plate weakened by a hole or a crack under concentrated forces and moments.They can also be used as fundamental solutions of boundary integral equations in BEM analysis for anisotropic plates with holes or cracks under general force and boundary conditions.  相似文献   

2.
The gradient model of stochastically inhomogeneous media is used to study the stress concentration around a circular hole in a two-component elastic composite. The study is based on a general solution of the system of equilibrium equations expressed in terms of harmonic functions and functions that satisfy the Helmholtz equation. This solution is used to solve problems for an infinite plane with a circular hole under uniform and uniaxial tension. The results obtained are compared with the solutions found using the theory of effective moduli, which is simpler __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 41–53, December 2007.  相似文献   

3.
This study is concerned with stresses around a pin-loaded hole in symmetrically stacked composite laminates of finite size using a two-dimensional direct boundary element method. Effects of friction and clearance between the pin and hole edge on the stresses are accounted for. Also geometric compatibility and force constraint between the pin and the plate are enforced. A new relation for geometric compatibility is proposed. Stress distributions and the contact angle with slip and no-slip regions around the pin-loaded hole corresponding to various parameters are investigated. Some interesting results are obtained. The present method is effective and simple to use which can be implemented with a personal computer.  相似文献   

4.
The Green’s functions have not been studied in open literatures for the bending problem of an anisotropic plate with an elliptic hole subjected to a normal concentrated force and a concentrated moment. In this paper, the problem is investigated and the Green’s functions are first obtained by using the complex potential approach. The techniques of conformal mapping transformation and analytic continuation are used to derive the closed-form complex stress functions. The Green’s functions obtained have some potential applications in the analysis of composite structures such as the modification of the displacement compatibility model for notched stiffened composite panels and the formulation of a new method for interlaminar stress analysis around holes of laminates.  相似文献   

5.
For materials characterized by a linear relation between Almansi strains and Cauchy stresses, relations between stresses and complex potentials are obtained and the plane static problem of the theory of elasticity is thus reduced to a boundary-value problem for the potentials. The resulting relations are nonlinear in the potentials; they generalize well-known Kolosov's formulas of linear elasticity. A condition under which the results of the linear theory of elasticity follow from the nonlinear theory considered is established. An approximate solution of the nonlinear problem for the potentials is obtained by the small-parameter method, which reduces the problem to a sequence of linear problems of the same type, in which the zeroth approximation corresponds to the problem of linear elasticity. The method is used to obtain both exact and approximate solutions for the problem of the extension of a plate with an elliptic hole. In these solutions, the behavior of stresses on the hole contour is illustrated by graphs. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 1, pp. 133–143, January–February, 2000.  相似文献   

6.
吴晓 《力学季刊》2016,37(3):581-589
采用弹性理论研究了拉压不同弹性模量薄板上圆孔的孔边应力集中问题.采用广义虎克定律推导出了拉压不同弹性模量薄板上圆孔边的应力平衡方程,并联合利用应力函数及边界条件得到了拉压不同弹性模量薄板上圆孔边的应力表达式.算例分析表明,当薄板材料的拉压弹性模量相差较大时,采用经典弹性理论研究薄板上圆孔的孔边应力是不合适的,当经典弹性理论与拉压不同弹性模量弹性理论的计算结果间的差别超过工程允许误差5%时,应该采用拉压不同弹性模量弹性理论进行计算.  相似文献   

7.
The moiré hole drilling method in a biaxially loaded infinite plate in plane stress is an inverse problem that exhibits a dual nature: the first problem results from first drilling the circular hole and then applying the biaxial loads, while the other problem arises from doing the opposite, i.e., first applying the biaxial load and then drilling the circular hole. The first problem is hardly ever addressed in the literature but implies that either separation of stresses or material property identification may be achieved from interpreting the moiré signature around the hole. The second is the well-known problem of determination of residual stresses from interpreting the moiré fringe orders around the hole. This paper addresses these inverse problem solutions using the finite element method as the means to model the plate with a hole, rather than the typical approach using the Kirsch solution, and a least-squares optimization approach to resolve for the quantities of interest. To test the viability of the proposed method three numerical simulations and one experimental result in a finite width plate are used to illustrate the techniques. The results are found to be in excellent agreement. The simulations employ noisy data to test the robustness of this approach. The finite-element-method-based inverse problem approach employed in this paper has the potential for use in applications where the specimen shape and boundary conditions do not conform to symmetric or well-used shapes. Also, it is a first step in testing similar procedures in three-dimensional samples to assess the residual stresses in materials.  相似文献   

8.
The elastoplastic state of conical shells weakened by an elliptic hole and subjected to finite deflections is studied. The material of the shells is assumed to be isotropic and homogeneous; the load is constant internal pressure. The problem is formulated and a technique for numerical solution with allowance for physical and geometrical nonlinearities is proposed. The distribution of stresses, strains, and displacements along the hole boundary and in the zones of their concentration is studied. The solution obtained is compared with the solutions of the physically and geometrically nonlinear problems and a numerical solution of the linear elastic problem. The stress-strain state around an elliptic hole in a conical shell is analyzed considering both nonlinearities __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 69–77, February 2008.  相似文献   

9.
Stress distributions are measured around the reinforced circular hole in an infinite plate subjected to uniaxial tension. Test plates are made of aluminum and reinforcing rings are of aluminum, brass, copper and mild steel. The relationships between stress-concentration factors, the ratio of Young's moduli of a plate and rings and dimensions of rings are studied. Results are compared with those obtained by the other authors and Gurney's theoretical results.  相似文献   

10.
The elastic field of an elliptic nano inhomogeneity embedded in an infinite matrix under anti-plane shear is studied with the complex variable method. The interface stress effects of the nano inhomogeneity are accounted for with the Gurtin–Murdoch model. The conformal mapping method is then applied to solve the formulated boundary value problem. The obtained numerical results are compared with the existing closed form solutions for a circular nano inhomogeneity and a traditional elliptic inhomogeneity under anti-plane. It shows that the proposed semi-analytic method is effective and accurate. The stress fields inside the inhomogeneity and matrix are then systematically studied for different interfacial and geometrical parameters. It is found that the stress field inside the elliptic nano inhomogeneity is no longer uniform due to the interface effects. The shear stress distributions inside the inhomogeneity and matrix are size dependent when the size of the inhomogeneity is on the order of nanometers. The numerical results also show that the interface effects are highly influenced by the local curvature of the interface. The elastic field around an elliptic nano hole is also investigated in this paper. It is found that the traction free boundary condition breaks down at the elliptic nano hole surface. As the aspect ratio of the elliptic hole increases, it can be seen as a Mode-III blunt crack. Even for long blunt cracks, the surface effects can still be significant around the blunt crack tip. Finally, the equivalence between the uniform eigenstrain inside the inhomogeneity and the remote loading is discussed.  相似文献   

11.
We solve the problem of determining the stress-strain state of an anisotropic plate with an elliptic hole and a system of thin rectilinear elastic inclusions. We assume that there is a perfect mechanical contact between the inclusions and the plate. We deal with a more precise junction model with the flexural rigidity of inclusions taken into account. (The tangential and normal stresses, as well as the derivatives of the displacements, experience a jump across the line of contact.) The solution of the problem is constructed in the form of complex potentials automatically satisfying the boundary conditions on the contour of the elliptic hole and at infinity. The problem is reduced to a system of singular integral equations, which is solved numerically. We study the influence of the rigidity and geometry parameters of the elastic inclusions on the stress distribution and value on the contour of the hole in the plate. We also compare the numerical results obtained here with the known data.  相似文献   

12.
We study the reinforcement of an infinite elastic plate with a circular hole by a larger eccentric circular patch completely covering the hole and rigidly adjusted to the plate along the entire boundary of itself. We assume that the plate and the patch are in a generalized plane stress state generated by the action of some given loads applied to the plate at infinity and on the boundary of the hole. We use the power series method combined with the conformal mapping method to find the Muskhelishvili complex potentials and study the stress state on the hole boundary and on the adhesion line. We consider several examples, study how the stresses depend on the geometric and elastic parameters, and compare the problem under study with the case of a plate with a circular hole without a patch. In scientific literature, numerous methods for reinforcing plates with holes, in particular, with circular holes, have been studied. In the monographs [1, 2], the problem of reinforcing the hole edges by stiffening ribs is solved. Methods for reinforcing a circular hole by using two-dimensional patches pasted to the entire plate surface are studied in [3, 4]. The case of a plate with a circular cut reinforced by a concentric circular patch adjusted to the plate along the boundary of itself or along some other circle was studied in [5, 6]. The reinforcement of an elliptic hole by a confocal elliptic patch was considered in [7].  相似文献   

13.
拉压模量不同材料的圆孔扩张问题   总被引:4,自引:0,他引:4  
本文建立了拉、压模量不同材料的圆孔扩展理论,分析了有关参数对圆孔扩张时应力、位移以及塑性区的发展规律的影响。  相似文献   

14.
A model is presented of a particulate composite containing spherical inclusions, each of which are surrounded by a localized region in which the elastic moduli vary smoothly with radius. This region may represent an interphase zone in a composite, or the transition zone around an aggregate particle in concrete, for example. An exact solution is derived for the displacements and stresses around a single inclusion in an infinite matrix, subjected to a far-field hydrostatic compression, and is then used to derive an approximate expression for the effective bulk modulus of a material containing a random dispersion of these inclusions. The analogous conductivity (thermal, electrical, etc.) problem is then discussed, and it is shown that the expression for the normalized effective conductivity corresponds exactly to that for the normalized effective bulk modulus, if the Poisson ratios of both phases are set to zero.  相似文献   

15.
16.
The elastoplastic state of thin spherical shells with an elliptic hole is analyzed considering that deflections are finite. The shells are made of an isotropic homogeneous material and subjected to internal pressure of given intensity. Problems are formulated and a numerical method for their solution with regard for physical and geometrical nonlinearities is proposed. The distribution of stresses (strains or displacements) along the hole boundary and in the zone of their concentration is studied. The results obtained are compared with the solutions of problems where only physical nonlinearity (plastic deformations) or geometrical nonlinearity (finite deflections) is taken into account and with the numerical solution of the linearly elastic problem. The stress—strain state in the neighborhood of an elliptic hole in a shell is analyzed with allowance for nonlinear factors __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 6, pp. 95–104, June 2005.  相似文献   

17.
椭圆孔口端点和裂纹端点处的变动态应力分析   总被引:4,自引:3,他引:1  
分析了椭圆孔口端点和裂纹端点处的变动态应力.在分析中,设带椭圆孔口的无限平板受远处应力作用,变动态应力分析指的是,令动点趋近于椭圆孔端点和椭圆孔变成裂纹这二个过程在各种相对关系下进行.在不同相对关系下,求出椭圆孔口或裂纹端点应力的极限值.分析表明,随着不同的变动状态,对于端点处的某些应力会得到不同的极限值.  相似文献   

18.
The stress-strain state of an anisotropic plate containing an elliptic hole and thin, absolutely rigid, curvilinear inclusions is studied. General integral representations of the solution of the problem are constructed that satisfy automatically the boundary conditions on the elliptic-hole contour and at infinity. The unknown density functions appearing in the potential representations of the solution are determined from the boundary conditions at the rigid inclusion contours. The problem is reduced to a system of singular integral equations which is solved by a numerical method. The effects of the material anisotropy, the degree of ellipticity of the elliptic hole, and the geometry of the rigid inclusions on the stress concentration in the plate are studied. The numerical results obtained are compared with existing analytical solutions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 173–180, July–August, 2007.  相似文献   

19.
The elastoplastic state of isotropic homogeneous cylindrical shells with elliptic holes and finite deflections under internal pressure is studied. Problems are formulated and numerically solved taking into account physical and geometrical nonlinearities. The distribution of stresses (displacements, strains) along the boundary of the hole and in the zone of their concentration is analyzed. The data obtained are compared with the numerical solutions of the physically nonlinear, geometrically nonlinear, and linear problems. The stress-strain state of cylindrical shells in the neighborhood of the elliptic hole is analyzed with allowance for nonlinear factors __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 5, pp. 46–54, May 2007.  相似文献   

20.
1.IntroductionItiswell-knownthatthefundame,ltalsolutionsorGreen'sfunctionsplayanimportantroleilllinearelasticity.Forexample,theycanbeusedtoconstructmanyanalyticalsolutionsofpracticalproblems.Itismoreimportantthattheyareusedasthefundamentalsolutionsintheboundaryelementmethod(BEM)tosolvesomecomplicatedproblem.Withthewidely-increasingapplicationofpiezoelectricmaterialsinengineeringproblems,thestudyregardingtheGreen'sfLlnctionsinpiezoelectricsolidshasreceivedmuchinterest.The3DGreen'sfunctionsi…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号