首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We find that the sextic nonlinear Schrödinger (NLS) equation admits breather‐to‐soliton transitions. With the Darboux transformation, analytic breather solutions with imaginary eigenvalues up to the second order are explicitly presented. The condition for breather‐to‐soliton transitions is explicitly presented and several examples of transitions are shown. Interestingly, we show that the sextic NLS equation admits not only the breather‐to‐bright‐soliton transitions but also the breather‐to‐dark‐soliton transitions. We also show the interactions between two solitons on the constant backgrounds, as well as between breather and soliton.  相似文献   

2.
Ram Krishna Sarkar 《Optik》2010,121(4):339-346
In this paper, using parabolic equation approach, coupled propagation of two coaxially co-propagating and mutually incoherent bright cylindrical beams in saturable nonlinear medium has been investigated. Considering the coupling coefficient equal to unity (κ=1), a detailed account of formation of spatial soliton pair (i.e. both beams are stationary trapped) and spatial breather pair (i.e. width of each beam oscillates with the propagation distance) has been provided and existence of spatially trapped breather pair (i.e. average width of each breather of the pair does not change with the propagation distance) has been shown. Conditions of formation of trapped spatial breather pair and their existence line has also been revealed for arbitrary beam width ratio of the beams. It is revealed that spatial soliton pairs are just a special case of trapped breather pair. The regions (conditions) of mutual-focusing and mutual-defocusing of spatial soliton pair/breather pair have also been identified. Lastly, the law of trapped breather pair formation is proposed.  相似文献   

3.
《Physics letters. A》2020,384(29):126761
A new (1+1)-dimensional integrable model is investigated, of which the Lax integrability is shown by the existence of its fifth order spectral problems. Its bilinear form is obtained via introducing an auxiliary variable. The multiple soliton solutions are obtained by solving its bilinear system. It is shown that there are four different dispersion relations for multiple solitons. The amplitudes of the solitons are only wave number dependent while the velocities of the solitons are not only wave number dependent but also dispersion relation dependent. Because of the existence of four dispersion relations, the interactions among solitons are much more abundant because for any fixed wave number there are four different velocities including two left moving and two right moving. Especially, the existence of the multiple velocities makes the velocity resonant conditions can be readily satisfied to form many types of bound states including soliton molecules, soliton-breather molecules and breather molecules.  相似文献   

4.
Li Sun  Jiaxin Qi  Hongli An 《理论物理通讯》2020,72(12):125009-115
Based on a special transformation that we introduce, the N-soliton solution of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is constructed. By applying the long wave limit and restricting certain conjugation conditions to the related solitons, some novel localized wave solutions are obtained, which contain higher-order breathers and lumps as well as their interactions. In particular, by choosing appropriate parameters involved in the N-solitons, two interaction solutions mixed by a bell-shaped soliton and one breather or by a bell-shaped soliton and one lump are constructed from the 3-soliton solution. Five solutions including two breathers, two lumps, and interaction solutions between one breather and two bell-shaped solitons, one breather and one lump, or one lump and two bell-shaped solitons are constructed from the 4-soliton solution. Five interaction solutions mixed by one breather/lump and three bell-shaped solitons, two breathers/lumps and a bell-shaped soliton, as well as mixing with one lump, one breather and a bell-shaped soliton are constructed from the 5-soliton solution. To study the behaviors that the obtained interaction solutions may have, we present some illustrative numerical simulations, which demonstrate that the choice of the parameters has a great impacts on the types of the solutions and their propagation properties. The method proposed can be effectively used to construct localized interaction solutions of many nonlinear evolution equations. The results obtained may help related experts to understand and study the interaction phenomena of nonlinear localized waves during propagations.  相似文献   

5.
李淑青  杨光晔  李禄 《物理学报》2014,63(10):104215-104215
求出了高阶Hirota方程在可积条件下的一种精确呼吸子解,并基于此呼吸子解得到了Hirota方程的一种怪波解.在此怪波解的基础上研究了怪波的激发,发现对平面波进行周期性扰动可以激发怪波,对平面波进行高斯扰动可以更快地激发怪波,还可以直接在常数项上增加高斯扰动激发怪波.作为一个实例,采用分步傅里叶方法数值研究了在考虑自频移和拉曼增益时怪波的传输特性,自频移使怪波中心发生偏移,拉曼增益使得怪波分裂得更快,而且拉曼增益值越大怪波分裂得越快,但是拉曼增益对怪波的峰值强度没有明显影响.最后数值模拟了相邻怪波之间的相互作用特点,随着怪波之间距离的减小,怪波将合二为一,成为一束怪波,之后再分裂,并分析了拉曼增益和自频移对怪波相互作用的影响.  相似文献   

6.
The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.  相似文献   

7.
8.
Trans-polyacetylene with a degenerate ground state has a nonlinear excitation of soliton after photoexcitation, due to the electron-phonon coupling. The excess energy of an excited electron-hole pair over a soliton pair creation induces a breather oscillation characterized by collective stretching vibration of the carbon-carbon bonds. A time-frequency analysis of pump probe signal shows that instantaneous frequencies of stretching modes are modulated for approximately 50 fs after excitation and the modulation period is 44+/-3 fs consistent with the theoretical expectation, clearly verifying the breather.  相似文献   

9.
Dynamics of breather defects in the periodic structures of rolls arising at electroconvection in nematic liquid crystals twisted by π/2 has been studied experimentally and theoretically. The axial components of the velocity of a hydrodynamic flow in the twist structures of nematics are opposite in the neighboring rolls. Dynamics of the breather defect is the periodic creation and annihilation of a pair of classical dislocations with the topological indices “+1” and “-1.” The annihilation occurs faster than the creation. It has been shown that the asymmetric time dynamics of the breather defect is described well by the solution of the perturbed sine-Gordon equation in the form of an interacting soliton and antisoliton.  相似文献   

10.
The derivative nonlinear Schrödinger (DNLS) equation, which governs the propagation of the femtosecond optical pulse in a monomodal optical fiber, is analytically studied in this Letter. Breather and double-pole solutions are derived from the two-soliton solution with the choice of parameters. It is found that the parameters in the DNLS equation cannot only control the phase and propagation direction of the breather and double pole, but also influence the interaction period of the breather. Elastic collisions between a breather and a dark/anti-dark soliton are studied by the qualitative analysis and graphical illustration. The stability of the breather and double-pole solutions is also analyzed.  相似文献   

11.
In the paper, the rational breather soliton and kink solitary wave solution of the (2+1)-dimensional PBLMP equation are obtained by adopting Hirota bilinear method and selecting different test functions. Furthermore, it has been found that the fusion and degeneration of the kink solitary wave occur when interaction between the rational breather soliton and the kink solitary wave happens. These phenomena are very helpful in researching soliton dynamical complexity in the higher dimensional systems.  相似文献   

12.
The thermodynamics of the massive Thirring model is formulated in the weak sine-Gordon coupling regime. In particular, the breather problem is discussed and the exact classical theory is reproduced. The soliton mass and the breather mass at finite temperature are also found.  相似文献   

13.
We study the collisions of moving breathers with the same frequency, traveling with opposite directions within a Klein-Gordon chain of oscillators. Two types of collisions have been analyzed: symmetric and non-symmetric, head-on collisions. For low enough frequency the outcome is strongly dependent of the dynamical states of the two colliding breathers just before the collision. For symmetric collisions, several results can be observed: breather generation, with the formation of a trapped breather and two new moving breathers; breather reflection; generation of two new moving breathers; and breather fusion bringing about a trapped breather. For non-symmetric collisions some possible results are: breather generation, with the formation of three new moving breathers; breather fusion, originating a new moving breather; breather trapping with breather reflection; generation of two new moving breathers; and two new moving breathers traveling as a bound state. Breather annihilation has never been observed.  相似文献   

14.
Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.  相似文献   

15.
Under investigation in this paper is an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Lax pair, bilinear forms, and bilinear Bäcklund transformations are derived. Based on the bilinear forms, the first-, second-, and third-order nonautonomous soliton solutions are derived. Propagation and interaction of the nonautonomous solitons are investigated and influence of the variable coefficients is also discussed: Amplitude of the first-order nonautonomous soliton is determined by the spectral parameter and perturbed factor; there exist two kinds of the solitons, namely the elevation and depression solitons, depending on the sign of the spectral parameter; the background where the nonautonomous soliton exists is influenced by the perturbed factor and external force coefficient; breather solutions can be constructed under the conjugate condition, and period of the breather is related to the dispersive and nonuniform coefficients.  相似文献   

16.
This paper studies the adiabatic dynamics of the breather soliton of the sine-Gordon equation. The integrals of motion are found and then used in soliton perturbation theory to derive the differential equation governing the soliton velocity. Time-dependent functions arise and their properties are studied. These functions are found to be bounded and periodic and affect the soliton velocity. The soliton velocity is numerically plotted against time for different combinations of initial velocities and perturbation terms.  相似文献   

17.
In this paper, we obtained the exact breather-type kink soliton and breather-type periodic soliton solutions for the (3 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation using the extended homoclinic test technique. Some new nonlinear phenomena, such as kink and periodic degeneracies, are investigated. Using the homoclinic breather limit method, some new rational breather solutions are found as well. Meanwhile, we also obtained the rational potential solution which is found to be just a rogue wave. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

18.
The Benjamin–Ono equation is hereby investigated, which arises in the context of long internal gravity waves in a stratified fluid. With the Hirota method and symbolic computation, breather solutions are derived. Propagation of the breather and elastic collisions between the breather and soliton are graphically analyzed. The collision period and the bunch number in a wave packet are relevant to the ratio of the real part to the imaginary of the wavenumber. Through the coalescence of wavenumbers in the two-soliton solutions, we obtain the double-pole solutions.  相似文献   

19.
The (2+1)-dimensional Boiti–Leon–Manna–Pempinelli (BLMP) equation is an important integrable model. In this paper, we obtain the breather molecule, the breather-soliton molecule and some localized interaction solutions to the BLMP equation. In particular, by employing a compound method consisting of the velocity resonance, partial module resonance and degeneration of the breather techniques, we derive some interesting hybrid solutions mixed by a breather-soliton molecule/breather molecule and a lump, as well as a bell-shaped soliton and lump. Due to the lack of the long wave limit, it is the first time using the compound degeneration method to construct the hybrid solutions involving a lump. The dynamical behaviors and mathematical features of the solutions are analyzed theoretically and graphically. The method introduced can be effectively used to study the wave solutions of other nonlinear partial differential equations.  相似文献   

20.
We study the effect of time-dependent linear and quadratic potentials on the profile and dynamics of rogue waves represented by a Peregrine soliton. The Akhmediev breather, Ma breather, bright soliton, Peregrine soliton, and constant wave (CW) are all obtained by changing the value of one parameter in the general solution corresponding to the amplitude of the input CW. The corresponding solutions for the case with linear and quadratic potentials were derived by the similarity transformation method. While the peak height and width of the rogue wave turn out to be insensitive to the linear potential, the trajectory of its center-of-mass can be manipulated with an arbitrary time-dependent slope of the linear potential. With a quadratic potential, the peak height and width of the rogue wave can be arbitrarily manipulated to result, for a special case, in a very intense pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号