首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《先进技术聚合物》2018,29(1):641-648
To explore the component synergistic effect of boron/phosphorus compounds in epoxy resin (EP), 3 typical boron compounds, zinc borate (ZB), boron phosphate (BPO4), and boron oxide (B2O3), blended with phosphaphenanthrene compound TAD were incorporated into EP, respectively. All 3 boron/phosphorus compound systems inhibited heat release and increased residue yields and exerted smoke suppression effect. Among 3 boron/phosphorus compound systems, B2O3/TAD system brought best flame‐retardant effect to epoxy thermosets in improving the UL94 classification of EP composites and also reducing heat release most efficiently during combustion. B2O3 can interact with epoxy matrix and enhance the charring quantity and quality, resulting in obvious condensed‐phase flame‐retardant effect. The combination of condensed‐phase flame‐retardant effect from B2O3 and the gaseous‐phase flame‐retardant effect from TAD effectively optimized the action distribution between gaseous and condensed phases. Therefore, B2O3/TAD system generated component synergistic flame‐retardant effect in epoxy thermosets.  相似文献   

2.
A donor-acceptor interaction between H+-cations of dodecahydro-closo-dodecaboric acid and the amine group of chitosan results in the generation of chitosanium dodecahydro-closo-dodecaborate, (C6O4H9NH3)2B12H12 — water-insoluble salt. The presence of four pairs of donor oxygen atoms in its composition makes for the existence of (C6O4H9NH3)2B12H12× nH2B12H12 (0 < n ≤ 4) compounds. When treating the latter with gaseos ammonia, the compounds of (C6O4H9NH3)2B12H12×n(NH4)2B12H12 (0 < n ≤ 4) composition are formed. The individuality of the compounds was confirmed by IR and X-ray PE spectral studies, chemical and X-ray phase analyses, and thermogravimetry.  相似文献   

3.
A novel metallo‐organically templated pentaborate with layered framework, [Cd(TETA)(C2H3O2)][B5O6(OH)4] ( 1 ) (TETA = triethylenetramine), was synthesized under mild solvothermal conditions. The structure was determined by single‐crystal X‐ray diffraction and further characterized by FT‐IR spectroscopy, elemental analysis, thermogravimetric analysis, and photoluminescence spectroscopy. The structure consists of an isolated polyborate anion [B5O6(OH)4] and the cadmium complex cation of [Cd(TETA)(C2H3O2)]+, which contains both organic amine and organic acid ligands. The [B5O6(OH)4] units are connected together by hydrogen bonds, and a 2D sheet‐like framework with rectangle‐like 12‐membered boron rings are formed. The [Cd(TETA)(C2H3O2)]+ complex cations are located in the free space between the layers and connect the adjacent borate layers through hydrogen bonds to form a three‐dimensional supramolecular network. The luminescent properties of the compound were studied for the first time in the series of metallo‐organically‐templated pentaborates, and a blue luminescence occurs with an emission maximum at 468 nm upon excitation at 397 nm.  相似文献   

4.
A novel series of boronated porphyrins for potential use in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for tumor suppression is described. Protoporphyrin IX {i.e., bis(α‐methyl‐β‐pentylethylether)protoporphyrin IX, and bis(α‐methyl‐β‐dodecanylethylether)protoporphyrin IX} bearing polyhedral borane anions (B12H11SH2?, B12H11NH3?, or B12H11OH2?) were synthesized with reasonable yields. Modification of the protoporphyrin IX structure was achieved by variation of the lengths of the alkyl chains (pentyl and dodecanyl) attached through ether linkages to the former vinyl groups. The goal of this modification was to develop boronated porphyrins with chemical and physical properties that differed from those of protoporphyrin IX. Performance of an MTT assay with each derivative revealed that the synthesized boronated porphyrins showed low cytotoxicities in a variety of cancer cells. Of these compounds, B12H11NH22?‐conjugated porphyrin induced a significant increase in the level of boron accumulation and PDT efficacy against HeLa cells.  相似文献   

5.
The crystal structure of the title compound, K[(CN)2CC(O)NH2)] or K+·C4H2N3O, conventionally abbreviated as Kcdm, where cdm is carbamoyldi­cyano­methanide, is described. The bond lengths and angles of the cdm cation are comparable to those reported previously for [M(cdm)2(H2O)4]·2H2O (M = Ni, Mn and Co). The K atoms are coordinated to four nitrile N atoms and two carbonyl O atoms in a distorted trigonal prismatic fashion, with two further N atoms semicoordinated through the centers of two prism side faces. This coordination leads to the formation of mixed anion–cation sheets parallel to the ab plane, which are joined together via hydrogen‐bonding interactions. The cdm anion is potentially useful for the formation of transition metal coordination polymers, in which magnetic superexchange could occur through a bidentate cdm bridge. Kcdm provides a model compound by which the molecular geometry of the cdm anion can be analyzed.  相似文献   

6.
Common wisdom has it that organoboranes are readily oxidized. Described herein is that also their reduction can result in remarkable chemistry. Treatment of dimeric 9H‐9‐borafluorene with Li metal in toluene yields two strikingly different classes of compounds. One part of the sample reacts in a way similar to B2H6, thus affording an aryl(hydro)borane cluster reminiscent of the [B3H8]? anion. The other part furnishes a dianionic boron‐doped graphene flake devoid of hydrogen substituents at the boron centers and featuring a central B?B bond. A change in the solvent to THF allows an isolation of this dibenzo[g,p]chrysene analogue in good yields.  相似文献   

7.
The paper presents a comparative analysis of the possibilities and characteristic features of the application of various polyhedral boron compounds, viz., the closo-decaborate anion [B10H10]2–, the closo-dodecaborate anion [B12H12]2–, the carba-closo-dodecaborate anion [CB11H12], carboranes C2B10H12, and the bis(dicarbollide) complexes [M(C2B9H11)2] (M = Fe, Co, or Ni), in boron neutron capture therapy (BNCT) for cancer. The requirements on compounds used in BNCT are formulated and the advantages of the application of the closo-dodecaborate anion are considered. The data on the synthesis of various derivatives of the closo-dodecaborate anion, which either already found use in BNCT or are most promising in this field, are summarized. The possibilities of the application of agents derived from the closo-dodecaborate anion in medical diagnostics are discussed.  相似文献   

8.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

9.
The hydrothermal reaction of Cu(CH3COO)2·H2O, H3BO3, ethylenediamine and H2O in a molar ratio of 3:20:9:222 at 140°C for 5 d yields the deep blue crystals of a new copper polyborate [Cu(en)2B(OH)3]· [B5O5(OH)7] (en?H2NCH2CH2NH2) in 70% yield. It crystallizes in monoclinic system, space group P21/c, with unit cell dimensions, a=1.2779(2) nm, b=1.0167(15) nm, c=1.5019(2) nm, β=90.30(2)°, Z=4. The crystal structure of this compound consists of [Cu(en)2B(OH)3]2+ cation and [B5O5(OH)7]2? anion, which are linked together through hydrogen bonding interactions and electrostatic forces, forming an interesting three‐dimensional framework. The [B5O5(OH)7]2? anion is constituted of [B4O5(OH)4]2? anion and discrete B(OH)3 group which attaches to the side of [B4O5(OH)4]2? through intramolecular hydrogen bonds. Fundamental vibrational modes of this compound were identified and band assignments were made. The middle bands observed at 882 and 575 cm?1 in Raman spectrum are the characteristic peak of B(OH)3 group and [B4O5(OH)4]2? anion, respectively. Additionally the thermal behavior of title compound was recorded and its decomposition mechanism was discussed.  相似文献   

10.
The Lewis base SMe2 in 7‐B11H13(SMe2) ( 1a ) can be replaced by the amines L = NH2(CH2tBu), NH2Cy, NH2Ph, NH2(4‐C6H4Me), py, chinoline or the phosphanes L = PPh3, PMePh2, yielding 7‐B11H13L ( 1b ‐ i ). The borane 1a can be deprotonated by certain amines, alkanides, or hydrides to give the anion 7‐B11H12(SMe2) ( 2a ). Replacing the base SMe2 in the anion 2a by weak bases gives B11H12L (L = PPh3, MeCN; 2h , j ). Upon reaction of 1a with the amine NH2(CH2tBu) in the ratio 1:2, a deprotonation and the substitution of SMe2 by the amine are observed, 7‐B11H12[NH2(CH2tBu)] ( 2b ) being formed. At 170 °C, the 7‐isomers 1b , f are isomerized into a mixture of the corresponding 1‐ and 2‐isomers ( 1b′ , f′ and 1b″ , f″ , respectively).  相似文献   

11.
The title compound, [Co(C6H13)(C11H19N4O2)(H2O)]ClO4, is in the general class of coenzyme B12 models which contain a ClO4 anion and a [Co(C6H13)(C11H19N4O2)(H2O)]+ cation. In the cation, the Co atom has a distorted octahedral coordination, with the n‐hexyl and H2O ligands in axial positions. The crystal data reveal some degree of flexibility in the Costa‐type system, which is similar to the coenzyme B12.  相似文献   

12.
It is demonstrated by X-ray diffraction that, in the case of dodecahydro-closo-dodecaborates with small cations (H+, Li+, Na+, K+, NH 4 + ), the intercalation of the B12H 12 2? anion into the interlayer space of graphite oxide is more favorable than the crystallization of a free salt. In the case of large cations commensurable with B12H 12 2? (e.g., Cs+), no intercalation takes place because these cations and the dodecaborate-closo-dodecaborate anion form stable cubic crystals as a separate phase outside the graphite oxide structure.  相似文献   

13.
The [B12H12]2? anion shows an extensive substitutional chemistry based on its three‐dimensional aromaticity. The replacement of functional groups can be attained by electrophilically induced substitution caused by Brønsted or Lewis acidic electrophiles (e.g. Pt2+). Until now, it was impossible to structurally characterize a metal‐substituted [B12H12]2? cage. When an aqueous solution containing both Bi3+ cations and [B12H12]2? anions was heated, the charge‐neutral bismuth undecahydro‐closo‐dodecaborane BiB12H11 was obtained, representing a new class of metalated [B12H12]2? clusters. The title compound was characterized by single‐crystal X‐ray diffraction and NMR spectroscopic methods. Compared to the typical B?H bond, the short B?Bi single bond (230 pm) exhibits inverted polarity.  相似文献   

14.
The reaction of propane‐1,3‐diamine hydrochloride, 18‐crown‐6 and zinc(II) chloride in methanol solution yields the title complex salt [systematic name: propane‐1,3‐diaminium tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1)], (C3H12N2)[ZnCl4]·C12H24O6, with an unusual supramolecular structure. The diprotonated propane‐1,3‐diaminium cation forms an unexpected 1:1 supramolecular rotator–stator complex with the crown ether, viz. [C3H12N2(18‐crown‐6)]2+, in which one of the –NH3+ substituents nests in the crown and interacts through N—H...O hydrogen bonding. The other –NH3+ group interacts with the [ZnCl4]2− anion via N—H...Cl hydrogen bonding, forming cation–crown–anion ribbons parallel to [010].  相似文献   

15.
The title compound, [Co(C5H11)(C62H88N13O14P)]·0.385C3H6O·12.650H2O, contains the isoamyl (3‐methyl­butyl) anion bonded to the CoIII ion through a C atom. The compound is thus a structural analog of the two biologically important vitamin B12 coenzymes adenosyl­cobalamin and methyl­cobalamin. The lower axial Co—N bond length [2.277 (2) Å] is one of the longest ever reported for a cobalamin and reflects the strong σ‐donor ability of the isoamyl group.  相似文献   

16.
将硼烷衍生物(C_2H_5)_4NB_(12)H_(11)NH_2COR[R=-CH-3,—CH=CH_2]经离子交换而得到的酸H[B_(12)H_(11)NH_2COR]与希土氧化物作用,制得一系列分子式为L-n[B_(12)H_(11)NH_2COR]_3·5H_2O的化合物,再用氧化吡啶(pyO)与上述化合物反应,就得到了分子式为[Ln(pyO)_6](B_(12)H_(11)NH_2COR)_3的新型化合物。  相似文献   

17.
Anion…π interactions are newly recognized weak supramolecular forces which are relevant to many types of electron‐deficient aromatic substrates. Being less competitive with respect to conventional hydrogen bonding, anion…π interactions are only rarely considered as a crystal‐structure‐defining factor. Their significance dramatically increases for polyoxometalate (POM) species, which offer extended oxide surfaces for maintaining dense aromatic/inorganic stacks. The structures of tetrakis(caffeinium) μ12‐silicato‐tetracosa‐μ2‐oxido‐dodecaoxidododecatungsten trihydrate, (C8H11N4O2)4[SiW12O40]·3H2O, (1), and tris(theobrominium) μ12‐phosphato‐tetracosa‐μ2‐oxido‐dodecaoxidododecatungsten ethanol sesquisolvate, (C7H9N4O2)3[PW12O40]·1.5C2H5OH, (2), support the utility of anion…π interactions as a special kind of supramolecular synthon controlling the structures of ionic lattices. Both caffeinium [(HCaf)+ in (1)] and theobrominium cations [(HTbr)+ in (2)] reveal double stacking patterns at both axial sides of the aromatic frameworks, leading to the generation of anion…π…anion bridges. The latter provide the rare face‐to‐face linkage of the anions. In (1), every square face of the metal–oxide cuboctahedra accepts the interaction and the above bridges yield flat square nets, i.e. {(HCaf+)2[SiW12O40]4?}n. Two additional cations afford single stacks only and they terminate the connectivity. Salt (2) retains a two‐dimensional (2D) motif of square nets, with anion…π…anion bridges involving two of the three (HTbr)+ cations. The remaining cations complete a fivefold anion…π environment of [PW12O40]3?, acting as terminal groups. This single anion…π interaction is influenced by the specific pairing of (HTbr)+ cations by double amide‐to‐amide hydrogen bonding. Nevertheless, invariable 2D patterns in (1) and (2) suggest the dominant role of anion…π interactions as the structure‐governing factor, which is applicable to the construction of noncovalent linkages involving Keggin‐type oxometalates.  相似文献   

18.
Conclusions For B10H12L2, where L=NH3, C5H5N, or C9H7N, features of thermal transformations in the range 25–850°C and the composition of the pyrolysis products are determined. The latter are x-ray amorphous phases, containing nitride, carbide, boron carbide, boron, and carbon.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2481–2484, November, 1988.  相似文献   

19.
The asymmetric unit of the title salt, 2NH4+·B10H102−·1.5H2O or (NH4)2B10H10·1.5H2O, (I), contains two B10H102− anions, four NH4+ cations and three water molecules. (I) was converted to the anhydrous compound (NH4)2B10H10, (II), by heating to 343 K and its X‐ray powder pattern was obtained. The extended structure of (I) shows two types of hydrogen‐bonding interactions (N—H...O and O—H...O) and two types of dihydrogen‐bonding interactions (N—H...H—B and O—H...H—B). The N—H...H—B dihydrogen bonding forms a two‐dimensional sheet structure, and hydrogen bonding (N—H...O and O—H...O) and O—H...H—B dihydrogen bonding link the respective sheets to form a three‐dimensional polymeric network structure. Compound (II) has been shown to form a polymer with the accompanying loss of H2 at a faster rate than (NH4)2B12H12 and we believe that this is due to the stronger dihydrogen‐bonding interactions shown in the hydrate (I).  相似文献   

20.
The structure of the title compound, NH4+·C12H22O2PS2, consists of a polymeric arrangement of ammonium cations and O,O‐dicyclohexyl phosphorodithioate anions linked through N—H⋯O and N—H⋯S hydrogen bonds. These inter­actions result in the formation of (100) sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号