首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
Nd:LuVO4晶体的生长及其性能研究   总被引:2,自引:0,他引:2  
采用提拉(Czochralski)法生长了Nd:LuVO4晶体.利用液相反应法,以V2O5和NH4OH生成NH4VO3,Nd2O3、Lu2O3和HNO3生成Nd(NO3)3和Lu(NO3)3反应制备多晶料;所生长Nd0.01Lu0.99VO4晶体为16×20×21 mm3,质量超过40g.以X射线荧光分析仪测得其生长中各主要元素的分凝系数.其中Nd3+约为0.91,V3+和Lu3+接近1.还测定了其介电常数ε11=27.2,ε33=33.9(30℃,1kHz),以同步辐射X射线白光形貌术观察了其内部质量.  相似文献   

2.
Nd:GdVO4激光晶体的光谱性质和热学性质   总被引:1,自引:2,他引:1  
用提拉法生长了Nd:GdVO4单晶,测量了其室温吸收谱和室温荧光谱,测量了其热扩散系数α和比热Cp,从而得到了其热导率λ。可以看到Nd:GdVO4晶体的吸收波长在808nm附近,与已经商品化的GaAlAs LD的发射波长能很好地匹配,从而增加了吸收效率,并且Nd:GdVO4晶体具有较高的热导率,有望在高功率的激光系统中获得应用。所以Nd:GdVO4晶体是理想的激光材料。  相似文献   

3.
本文报道了无序晶体Nd:CNGG的生长及其激光性能.采用提拉法成功生长了绿色、透明的大尺寸Nd:CNGG晶体.在He-Ne激光器照射下,未发现散射颗粒.在半导体激光器泵浦的条件下,我们研究了其1.06μm的连续激光输出性能.在8.56 W泵浦的情况下,得到1.52 W的激光输出.  相似文献   

4.
用群论的方法计算了Nd:YbVO4晶体的拉曼活性振动模数目,在室温下测得了其极化拉曼谱线,并指认了在不同几何配置下,各振动模式所对应的频率.同时,测得了室温下晶体的吸收谱,得到了中心波长为808 nm吸收峰的半高宽为12 nm,并在J-O理论的基础上计算了晶体的光学参数,其三个晶场参数分别为Ω2=6.88945×10-20 cm2、Ω4=4.13394×10-20 cm2、Ω6= 4.54503×10-20 cm2,并由此得到4F3/2能级的荧光寿命为178.69 μs,1062 nm处的荧光分支比为48.85;,积分发射截面为2.7867 10-18 cm2.分别在808 nm、940 nm激发下测得晶体室温发射谱,观察到了Nd→Yb以及Nd←Yb间的能量传递现象.  相似文献   

5.
Nd∶GdVO4激光晶体的光谱性质和热学性质   总被引:1,自引:0,他引:1  
用提拉法生长了Nd∶GdVO4单晶,测量了其室温吸收谱和室温荧光谱,测量了其热扩散系数α和比热CP,从而得到了其热导率λ.可以看到Nd∶GdVO4晶体的吸收波长在808nm附近,与已经商品化的GaAlAs LD的发射波长能很好地匹配,从而增加了吸收效率,并且Nd∶GdVO4晶体具有较高的热导率,有望在高功率的激光系统中获得应用.所以Nd∶GdVO4晶体是理想的激光材料.  相似文献   

6.
Tm:YAG晶体的生长及吸收特性   总被引:3,自引:0,他引:3  
采用提拉法生长出三种掺Tm3+浓度的Tm:YAG晶体.运用ICP-AEs测定Tm3+离子在Tm:YAG晶体中的分凝系数约为1.室温下测定了Tm:YAG晶体在190~900nm之间的吸收光谱及1000~4500cm-1范围内退火前后的红外吸收谱.测试结果表明,退火后3365cm-1处OH-1离子的吸收峰完全消失.说明在空气气氛下对Tm:YAG晶体进行退火处理改善了晶体的性能.  相似文献   

7.
Yb3+:YVO4晶体的生长及光谱性能研究   总被引:11,自引:5,他引:11  
采用提拉法生长出光学质量优良的Yb3+:YVO4晶体,研究生长过程中工艺参数的控制.测得掺杂浓度为18.1;Yb3+:YVO4晶体中Yb3+离子的有效分凝系数Keff为0.96.测定了不同Yb3+离子掺杂浓度晶体的吸收光谱和荧光光谱,并分别计算了不同掺杂浓度下Yb3+:YVO4晶体的光谱参数.本文总结和解释了掺杂浓度影响其性能的规律,讨论了Yb3+:YVO4晶体作为激光晶体的优点.  相似文献   

8.
采用提拉法沿a轴和c轴生长出无色透明的GdVO4单晶,质量均超过50g.用X射线荧光分析法测得两个主要元素Gd和V的分凝系数都接近1.室温下测量了GdVO4晶体的X射线粉末衍射图,确定所获GdVO4晶体属于四方晶系,D194h-I41/amd空间群.通过晶体的锥光干涉图确定GdVO4晶体为单轴晶,光轴方向平行于c轴且光学均匀性比较好.利用高分辨X射线衍射仪测量GdVO4晶体的摇摆曲线,结果表明生长的GdVO4晶体的晶格完整性较好.通过浮力法测得其室温下密度为5.478g/cm3.透过波谱表明透过波长大于340nm.  相似文献   

9.
利用商群对称分析法分析了Nd:LuVO4晶体的晶格振动模分类,测量了Nd:LuVO4晶体的红外光谱和拉曼光谱,从测定的谱线中指认了该晶体的振动模,理论与实验符合良好.测量了Nd:LuVO4晶体的热膨胀系数,a向、b向和c向的热膨胀系数分别为 1.7×10-7/K 、1.5×10-7/K和9.1×10-7/K.测量了比热,其值约为0.48J/g·K.测量了热传导率,其值沿<100>方向为6.2W/m·K,沿<001>方向为7.9W/m·K.这些参数显示该晶体是一种热学性能优良的激光晶体.  相似文献   

10.
采用固-液两相混合,使Nd2o3、Y2O3和V2O5在近常温条件下初步合成Nd:YVO4多晶原料,降低固相合成反应温度,减少V2O5在多晶原料制备过程中的挥发。讨论了α方向V单晶生长条件,采用提拉法,以(100)方向进行单晶生长,得到一系列掺杂浓度的Nd:YVO4单晶。  相似文献   

11.
采用固-液两相混合,使NdO3、Y2O3和V2O5在近常温条件下初步合成Nd:YVO4多晶原料,降低固相合成反应温度,减少V2O5在多晶原料制备过程中的挥发.讨论了a方向Nd:YVO4单晶生长条件,采用提拉法,以(100)方向进行单晶生长,得到一系列掺杂浓度的Nd:YVO4单晶.  相似文献   

12.
Nd:GdVO_4热常数的测量和激光性能研究   总被引:2,自引:0,他引:2  
中频感应加热提拉法生长了低钕掺杂的GdVO_4晶体,用机械分析仪来测量Nd:GdVO_4晶体的热膨胀系数,沿c方向的热膨胀系数为7.42×10~(-6)/K,而沿α方向的热膨胀系数只有1.05×10~(-6)/K,比同比Nd_(0.0045)Y_(0.9946)VO_4晶体样品测量结果小。差示扫描热计法测量了Nd:GdVO_4晶体的比热,298K时为0.52J/g·K。首次用激光脉冲法测量了Nd:GdVO_4晶体的室温热导率。实验表明,Nd:GdVO_4晶体沿<001>方向的热导率数值达11.4W/m·K,比Nd:YAG晶体高(测得10.7W/m·K),其<100>方向的热导率为10.1W/m·K。激光实验显示在较高功率泵浦激光输出上Nd:GdVO_4晶体具有比Nd:YVO_4晶体更加优良的性能。  相似文献   

13.
Nd∶NaY(WO4)2激光晶体生长   总被引:7,自引:0,他引:7  
采用提拉法生长出了四方晶系白钨矿结构的Nd:NaY(WO4)2(简称Nd∶NYW)激光晶体,尺寸为20mm×30mm.通过TG-DTA差热分析得到晶体的熔点为1211℃,从XRD分析得到晶胞参数为a=b=0.5212nm ,c=1.1268nm ,晶胞体积V=0.3062nm3.讨论了Nd∶NYW晶体的生长工艺,给出了晶体生长的最佳工艺参数.通过比较Nd∶NaBi(WO4)2(简称Nd∶NBW)和Nd:NYW的XRD、红外光谱和拉曼光谱测试结果,认为二者结构基本相同,为四方晶系白钨矿结构、I(4)空间群.  相似文献   

14.
A new liquid‐phase method synthesizing Nd:GdVO4 polycrystalline materials was introduced. High optical quality Nd:GdVO4 single crystals have been successfully grown by the Czochralski method. The effective segregation coefficients of Nd ion in Nd:GdVO4 crystal have been measured and discussed. Laser outputs at 1.06 μm and at 1.34 μm were achieved when Nd:GdVO4 crystal samples of 0.52 at% Nd concentration were pumped by a high‐power LD. A maximum output of 14.5 W at 1.06 μm has been obtained when the pump power is to 26 W, giving the slope efficiency of 63%. It is reported the first time that up to 4.64 W power laser at 1.34 μm has been achieved with optical conversion efficiency of 31.4% and slope efficiency of 32.9%.  相似文献   

15.
A Nd‐doped lutetium orthovanadate Nd:LuVO4 crystal has been grown using a modified Czochralski method. The thermal properties of this crystal have been studied by measuring the thermal expansion, specific heat and thermal diffusivity. The thermal expansion coefficients are α11 = 1.7 × 10‐6, α22 = 1.5 × 10‐6 and α33 = 9.1 × 10‐6/K in the temperature range of 298–573 K along the three respective crystallographic axes. The specific heat is almost linear and increases from 0.442 to 0.498 Jg‐1K‐1 in the measured temperature range. The thermal diffusivity is anisotropic and decreases with increasing temperature from 295 to 548 K. At room temperature the calculated thermal conductivities κ11 and κ33 are 7.96 and 9.77 Wm‐1K‐1, respectively. These thermal parameters of Nd:LuVO4 crystal have indicated that it is an excellent candidate laser material. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
液相法合成了GdVO4和YVO4多晶料,提拉法成功生长了低浓度掺钕的不同钆钇比YGdVO4混晶.X射线荧光分析法分析了晶体组分.吸收谱和透射谱显示,Nd:YGdVO4具有更大的吸收半宽.不同Gd/Y浓度比的晶体激光性能有所不同,最大1.06μm激光输出达到7W,同时晶体在1.34μm 的激光输出超过了3W.Nd:YGdVO4混晶是一种新的具有潜力的激光晶体.  相似文献   

17.
Nd:YVO4 crystal has been grown by Czochralski method. The data of thermal expansion and specific heat have been measured. The thermal expansion coefficients along a- and c-axis are a1 = 2.2 x 10-6 /K, and a3 = 8.4 x 10-6 /K respectively. The specific heat is 24.6 cal/mol x K at 330 K. The large anisotropy along c- and a-axis of thermal expansion coefficients is explained by the structure of YVO4 crystal. 921 mW output laser at 1.06 mikrom has been obtained with a 3 mm x 3 mm x 1mm crystal sample when pumped by 1840 mW cw laser diode, and the slope efficiency is 55.5%.  相似文献   

18.
Nd:GGG晶体生长与开裂研究   总被引:3,自引:0,他引:3  
本文采用提拉法(CZ)生长了Nd:GGG晶体,并从理论上讨论了包裹物、提拉速度、晶体转速和降温速率等因素对晶体开裂的影响,最后给出了生长元开裂Nd:GGG晶体的最佳工艺参数:径向温度梯度越小越好,纵向温度梯度在0.5℃/mm,提拉速度2~4mm/h,晶体转速20~40r/min,降温速率不超过20℃/h.通过设计合理而稳定的温场、选择最佳工艺参数及退火处理等方法,较好地解决了Nd:GGG晶体开裂问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号