首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light induced phosphorylation of octopus rhodopsin was greatly enhanced by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), suggesting that the kinases are involved in regulating interaction between rhodopsin and G-protein. We determined phosphorylated peptides of octopus rhodopsin in the presence or absence of GTP gamma S. Possible phosphorylation sites for octopus rhodopsin enhanced by GTP gamma S were Thr329, Thr330 and/or Thr336, which suggest that the G-protein associates with cytoplasmic loops including C-terminal peptide in the seventh helix of octopus rhodopsin.  相似文献   

2.
Abstract— Previous resonance Raman spectroscopic studies of bovine and octopus rhodopsin and bathorhodopsin in the C–C stretch fingerprint region have shown drastically different spectral patterns, which suggest different chromophore-protein interactions. We have extended our resonance Raman studies of bovine and octopus pigments to the C=C stretch region in order to reveal a more detailed picture about the difference in retinal-protein interactions between these two pigments. The C=C stretch motions of the protonated retinal Schiff base are strongly coupled to form highly delocalized ethylenic modes located in the 1500 to 1650 cm−1 spectral region. In order to decouple these vibrations, a series of 11,12-D2-labeled retinals, with additional 13C labeling at C8, C10, C11 and C14, respectively, are used to determine the difference of specific C=C stretch modes between bovine and octopus pigments. Our results show that the C9=C10 and C13=C14 stretch mode are about 20 cm−1 lower in the Raman spectrum of octopus bathorhodopsin than in bovine bathorhodopsin, while the other C=C stretch modes in these two bathorhodopsins are similar. In contrast, only the C9=C10 stretch mode in octopus rhodopsin is about 10 cm−1 lower than in bovine rhodopsin, while other C=C stretches are similar.  相似文献   

3.
Although frit-fast atom bombardment (frit-FAB) and continuous-flow FAB mass spectrometry have become standard methods for the analysis of peptides and peptide mixtures, these techniques have not been applied previously to the analysis of oligonucleotides. Mobilephase composition, flow rate, and sample size were optimized for the analysis of oligonucleotides by negative ion frit-FAB mass spectrometry (a type of continuous-flow FAB mass spectrometry). With a mobile phase consisting of methanol/water/triethanolamine (80:20:0.5, v/v/w), flow injection frit-FAB analysis of oligonucleotides showed lower limits of detection compared to standard probe FAB mass spectrometry. For example, in order to obtain a signal-to-noise ratio of 3:1, 38 prnol of d(GTIAAC) were required for frit-FAB mass spectrometry and 62 pmol were required for standard probe FAB mass spectrometry. The largest difference between frit-FAB and standard probe FAB was observed for d(pC)5, for which the limit of detection by frit-FAB was approximately 11-fold lower than by standard FAB mass spectrometry. Adjustment of the mobile phase to pH 7 with trifluoroacetic acid increased the limit of detection (reduced sensitivity) a minimum of sixfold. Equimolar mixtures of two or three oligonucleotides produced deprotonated molecules in identical relative abundances whether analyzed by frit-FAB or standard probe FAB mass spectrometry. Finally, frit-FAB liquid chromatography mass spectrometry was demonstrated by separating mixtures of oligonucleotides on a β -cyclodextrin high-performance liquid chromatography column with a mobile phase containing methanol, water, and triethanolamine.  相似文献   

4.
Abstract— Light-dependent phosphorylation of rhodopsin (Rho) is a first step in the desensitization of the signaling state of the receptor during vertebrate and invertebrate visual transduction. We found that only 358Ser of the photoac-tivated octopus Rho (oRho*) was phosphorylated by octopus rhodopsin kinase (oRK). Tryptic truncation of the C-terminal PPQGY repeats of oRho that follow the phosphorylation region did not influence spectral or G-protein activation properties of oRho but abolished phos phorylation. Despite significant structural differences between oRK and mammalian RK, these results provide i further evidence of the importance of singly phosphorylated species of Rho* in the generation of arrestin binding sites.  相似文献   

5.
The classic method of photometric curves for photosensitivity determination has been extended to the case of photoreversible reactions and applied to the octopus rhodopsin --> acid metarhodopsin photoreaction. In such cases, measurements at one irradiation wavelength yield the sum of the photosensitivities of the forward and reverse processes. However, by using different irradiation wavelengths, together with appropriate molar extinction coefficients, the quantum efficiencies for both reactions may be resolved. For detergent-solubilized octopus rhodopsin at room temperature, pH 7, the quantum yields are found to be 0.69 (+/- 0.03) for rhodopsin --> metarhodopsin, in line with values observed in a range of vertebrate visual pigments, and 0.43 (+/- 0.02) for the reverse photoregeneration process. The similarities in overall photosensitivities of the forward and reverse reactions in the visible region are consistent with a significant physiological role for photoreversal in the cephalopod visual cycle.  相似文献   

6.
Mass spectrometric identification of cysteinsulfinic acid resulting in restoration of activity of chemically modified Glu400 Cys catalytic-base glucoamylase (GA) mutants is described. This oxidation unexpectedly occurred during attempts to carboxyalkylate the Cys400 GA mutant using three different alkylation reagents. However, mass spectrometric peptide mapping did not show the presence of carboxyalkylation of the Cys400 residue but suggested an oxidation to cysteinsulfinic acid based on the observed mass increment. The presence of cysteinsulfinic acid was confirmed by employing matrix-assisted laser desorption/ionization mass spectrometry combined with post-source decay analysis. Furthermore, strong enhancement of metastable fragmentation was observed for peptides containing oxidized Cys in comparison with non-oxidized peptide.  相似文献   

7.
A conventional fast-atom bombardment (FAB) ion source was used to achieve matrix-assisted laser desorption (MALD) in a high-mass, double-focusing, magnetic mass spectrometer. The pulsed ion signals generated by irradiation of a mixture of sample and matrix (2,5-dihydroxybenzoic acid) with either a XeF excimer laser (353 nm) or a nitrogen laser (337 nm) were recorded with a focal-plane detector. A resolution (full-width at half maximum) of 4500 was achieved at m/z 1347.7 (the peptide substance P), 2500 for CsI cluster ions at m/z 10,005.7, and 1250 for the isotope cluster of the small protein cytochrome c (horse) [M+H]+ = m/z 12,360 (average). Sensitivity is demonstrated with 11 fmol of substance P. A survey scan is taken to locate the m/z of the sample molecular ion. The segment that contains the sample can then be integrated for a longer time to produce a better signal-to-noise ratio. In addition to higher sensitivity and lower matrix interference, the advantage of MALD over FAB is the former's lower susceptibility to the presence of salts, and competition between hydrophobic and hydrophilic components of a mixture. This feature is demonstrated by the complete MALD spectrum of a crude partial tryptic digest of sperm-whale apomyoglobin, containing 24 peptides, representing the entire sequence of this protein.  相似文献   

8.
The recently developed FAB/MSMS methodology (i.e.) ionization of an underivatized peptide by using fast-atom-bombardment (FAB) combined with tandem mass spectrometry (MSMS) is applied for the sequencing of the cyclotetrapeptide tentoxin ( 12 ). The scope and limitation of the strategy is discussed in detail. Possible resolutions to overcome problems related to (i) the resolution of isobaric fragment ions and (ii) the distinction of sequence vs. retro-sequence are investigated. The novel strategy is compared with conventional techniques. Significant improvement of the presently used FAB/MSMS methodology can be achieved by combining this approach with accurate mass measurements.  相似文献   

9.
The development of a high-performance liquid chromatography (HPLC)/fast atom bombardment (FAB) interface and the subsequent commercial availability of such systems has facilitated the routine application of the technique to problems in pharmaceutical research and development. Although many products are amenable to FAB analysis and hence LC/FAB, the greatest benefit of the interface has been in the field of peptide and protein analysis. It has been found that, even with post-column matrix addition, chromatographic resolution is maintained and, by plotting mass chromatograms, the resolution may be greater than that achieved by the less specific UV detector. As only 1% matrix is required in the final eluent, the system is stable for extended periods and has been used for 3 h LC/FAB experiments or used continuously for multiple analyses over 8 h periods. In addition to the acquisition of relative molecular mass information, the constant background can be completely subtracted to yield structurally significant fragment ions which may allow sequencing of components from the single LC/FAB experiment. Applications of LC/FAB to date include the characterization of Iys(78)-plasminogen by the on-line analysis of complex mixtures of peptides resulting from the various enzymatic digests.  相似文献   

10.
The structural characterization of the Escherichia coli-expressed human interferon alpha-2b (rh-IFN alpha-2b) was carried out by employing the fast atom bombardment (FAB) and plasma desorption (PD) mapping methods. The mass spectral data of the rh-IFN alpha-2b and the trypsin-generated peptide mixture allowed rapid and facile confirmation of the cDNA-derived sequence and determination of the existing disulfide pattern in the protein molecule. The same PD/FAB mapping approach was successfully employed in the structural determination of the iodination reaction product of rh-IFN alpha-2b and the potent vasoconstrictor peptide endothelin.  相似文献   

11.
二硫键是一种与多肽及蛋白质结构和功能密切相关的化学键. 当多肽中存在多个半胱氨酸时, 形成的二硫键可能会存在多种配对方式. 快速且精准地定位多肽中多对二硫键对研究多肽的结构与功能间的关系十分重要. 本文开发了一种基于化学裂解和生物质谱的新方法, 对利那洛肽中3对二硫键进行了精准定位. 通过解析裂解后特异肽段的二级质谱图, 确定利那洛肽中3对二硫键的配对方式分别为Cys1-Cys6, Cys2-Cys10和Cys5-Cys13. 该方法为二硫键的定位研究提供了新思路.  相似文献   

12.
Strong evidence exists that the distribution of phospholipids in the lung is a function of the degree of adult respiratory distress syndrome. The capabilities of positive-ion fast-atom bombardment (FAB) mass spectrometry for the determination of the relative distribution of intact diacylphosphatidylcholine species in lung lavage fluid were investigated. Two different FAB matrices and two different isolation/purification procedures--extraction/thin layer chromatography--high performance liquid chromatography (TLC-HPLC)--have been evaluated. In addition the relative fatty acid composition of the diacylphosphatidylcholines was determined by negative-ion FAB mass spectrometry using the [RCOO]- fragment ion. These results were compared with those obtained by gas chromatographic determination of the fatty acid methylesters.  相似文献   

13.
Cystine knots or nested disulfides are structurally difficult to characterize, despite current technological advances in peptide mapping with high-resolution liquid chromatography coupled with mass spectrometry (LC-MS). In the case of recombinant human arylsulfatase A (rhASA), there is one cystine knot at the C-terminal, a pair of nested disulfides at the middle, and two out of three unpaired cysteines in the N-terminal region. The statuses of these cysteines are critical structure attributes for rhASA function and stability that requires precise examination. We used a unique approach to determine the status and linkage of each cysteine in rhASA, which was comprised of multi-enzyme digestion strategies (from Lys-C, trypsin, Asp-N, pepsin, and PNGase F) and multi-fragmentation methods in mass spectrometry using electron transfer dissociation (ETD), collision induced dissociation (CID), and CID with MS3 (after ETD). In addition to generating desired lengths of enzymatic peptides for effective fragmentation, the digestion pH was optimized to minimize the disulfide scrambling. The disulfide linkages, including the cystine knot and a pair of nested cysteines, unpaired cysteines, and the post-translational modification of a cysteine to formylglycine, were all determined. In the assignment, the disulfide linkages were Cys138–Cys154, Cys143–Cys150, Cys282–Cys396, Cys470–Cys482, Cys471–Cys484, and Cys475–Cys481. For the unpaired cysteines, Cys20 and Cys276 were free cysteines, and Cys51 was largely converted to formylglycine (>70 %). A successful methodology has been developed, which can be routinely used to determine these difficult-to-resolve disulfide linkages, ensuring drug function and stability.   相似文献   

14.
A novel molecule T1 with efficient intramolecular charge transfer was designed as a fluorescent chemodosimeter for cysteine (Cys) and homocysteine (Hcy). Upon addition of Cys/Hcy, T1 exhibited greatly enhanced fluorescence intensity as well as a large absorption peak shift (70 nm), and can be used for bioimaging of Cys/Hcy in living cells and detection in human plasma by visual color change. The detection mechanism was proved by (1)H NMR, mass spectrometry analysis and Gaussian calculations.  相似文献   

15.
3-Mercaptopropionic acid (MPA)-capped CdTe nanocrystals (NCs) were synthesized in aqueous medium, and their interaction with cysteine (Cys) and homocysteine (Hcy) was studied by steady-state and time-resolved fluorescence spectra at different pH. At 6.4?<?pH?<?8.0, the fluorescence of CdTe NCs can be effectively enhanced by Cys and Hcy. While pH?>?9.6, only Cys quenches the fluorescence of the CdTe NCs, no fluorescence changes are observed for Hcy. Mechanism study shows that these pH manipulating fluorescence responses can be attributed to the following two reasons: first, both the thiol–thiolate equilibrium of Cys (Hcy) and the number of undercoordinated NCs surface sites capped with dual coordinated ligands are strong pH-dependent; second, different thiol-containing amino acids, with different redox energy level, can lead to distinguishable fluorescence responses of NCs. Based on these unique fluorescence responses, the possibilities of developing a sensitive detecting technique for Cys/Hcy and Cys through pH modulation can be explored.  相似文献   

16.
We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations-as well as their extensive fluctuations-suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin.  相似文献   

17.
The water-soluble L-cysteine-modified CdSe/CdS core/shell nanocrystals (expressed as CdSe/CdS/Cys nanocrystals) have been synthesized in aqueous by using L-cysteine as stabilizer. The size, shape, component and spectral property of CdSe/CdS/Cys nanocrystals were characterized by high-resolution transmission electron microscope (HRTEM), energy dispersive X-ray fluorescence (EDX), infrared spectrum (IR) and photoluminescence (PL). The results showed that the spherical CdSe/CdS/Cys nanocrystals with an average diameter of 2.3 nm have favorable fluorescent property, theirs photostability and fluorescence intensity are enhanced greatly after overcoating with CdS. The cysteine modified on the surface of core/shell CdSe/CdS nanocrystals renders the nanocrystals water-soluble and biocompatible. Based on the fluorescence quenching of the nanocrystals in the presence of calf thymus deoxyribonucleic acid (ct-DNA), a fluorescence quenching method has been developed for the determination of ct-DNA by using the nanocrystals as a novel fluorescence probe. The pH value of the system was selected at pH 7.4, with excitation and emission wavelength at 380 and 522 nm, respectively. Under the optimal conditions, the fluorescence quenching intensity of the system is linear with the concentration of ct-DNA in the range of 0.1-3.5 microg/mL (r=0.9987). The detection limit is 0.06 microg/mL. And two synthetic samples were analyzed satisfactorily.  相似文献   

18.
The crown ether capped metalloporphyrins (6) form complexes with metal cations; complex formation may be detected by fluorescence quenching for (6, M=ZnII or CuII) and paramagnetic guest cations or, in some cases, by FAB mass spectrometry. Complexation with alkyl ammonium cations was also examined using absorption spectrometry.  相似文献   

19.
Endostatin, a C-terminal fragment of collagen XVIII, is a promising protein drug which is in development for cancer therapy due to its anti-angiogenic activity. Although several endogenous molecular forms of human endostatin differing in their N-terminal length and their post-translational modifications (18.5-22 kDa) have been discovered, only one recombinant form of 20 kDa is used in clinical trials. This protein, recombinantly expressed in Pichia pastoris, contains four cysteines forming two disulfide bonds (Cys1-Cys4 and Cys2-Cys3). In contrast, there are conflicting data about the disulfide pattern of endogenous material. This report presents the disulfide analyses of both the endogenous circulating endostatins isolated from human hemofiltrate and the recombinant protein. The determination of the disulfide pattern was performed by Edman degradation, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and electrospray ionization ion trap mass spectrometry (ESI-ITMS) performed in the off-line nanospray mode. All native and recombinant endostatins exhibited a Cys1-Cys4 (Cys(162)-Cys(302)) and Cys2-Cys3 (Cys(264)-Cys(294)) linkage. For a clear discussion of fragmented disulfide-bridged peptide chains obtained from MS(n) experiments, a modified general nomenclature is proposed.  相似文献   

20.
A rapid and sensitive optical rotation (OR) measurement system using laser light has been developed to meet the demands of flash-photolysis experiments. The optimal OR resolution of the apparatus is 0.3mdeg with 10 μs time constant with single shot. The OR resolution could be easily improved less than 0.1 mdeg with accumulation of data by a kinetic processor. Applications are briefly described for the study of transient conformational change of photochemical intermediates of octopus rhodopsin following a blue light flash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号