首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
使用四丁基氢氧化铵-正硅酸四乙酯-水(TBAOH-TEOS-H2O)简单体系一步水热制备了具有多级孔道的微米级MEL结构分子筛聚集体.得到的silicalite-2微米球直径大于10μm且具有高达460 m2·g-1的比表面积和0.74 cm3·g-1的孔体积.微米球的生成一定程度上解决了催化应用过程中催化剂的分离和回收问题.同时,水热晶化过程中由纳米粒子自组装而成的晶间介孔缩短了反应物分子的扩散路径,保持了分子筛纳米晶粒的优势.此外,钛活性位的引入并未明显影响MEL微米球的形貌和结构,含钛的MEL微米球TS(钛硅分子筛)-2在苯酚羟基化反应中具有与纳米尺寸TS-1(100-200 nm)相当的催化活性,且TS-2可以通过简单过滤得到,简化了纳米级TS-1的分离和回收过程.  相似文献   

2.
使用四丁基氢氧化铵-正硅酸四乙酯-水(TBAOH-TEOS-H2O)简单体系一步水热制备了具有多级孔道的微米级MEL结构分子筛聚集体. 得到的silicalite-2 微米球直径大于10 μm且具有高达460 m2·g-1的比表面积和0.74 cm3·g-1的孔体积. 微米球的生成一定程度上解决了催化应用过程中催化剂的分离和回收问题. 同时,水热晶化过程中由纳米粒子自组装而成的晶间介孔缩短了反应物分子的扩散路径,保持了分子筛纳米晶粒的优势. 此外,钛活性位的引入并未明显影响MEL微米球的形貌和结构,含钛的MEL微米球TS(钛硅分子筛)-2在苯酚羟基化反应中具有与纳米尺寸TS-1(100-200 nm)相当的催化活性,且TS-2 可以通过简单过滤得到,简化了纳米级TS-1的分离和回收过程.  相似文献   

3.
李继定 《高分子科学》2010,28(4):625-635
<正>Ultra-fine silicalite-1 particles were modified with four kinds of chlorosilanes(dodecyltrichlorosilane, octyltrichlorosilane,hexadecyltrichlorosilane and octadecyltrichlorosilane) and characterized by FI-IR,TGA,contact angle measurements and BET analysis.It was found that the surface hydrophobicity of silicalite-1 particles was improved significantly as the alkyl group was strongly bonded to the particle surface.Modified silicalite-1 particles were incorporated into PDMS(poly(dimethylsiloxanediol)) membranes,which were applied for the pervaporation separation of ethanol/water mixtures.The effect of surface properties,zeolite loading and operation conditions on pervaporation performance of the membranes was investigated.The separation factor of PDMS membranes filled with modified silicalite-1 increased considerably compared with that filled with unmodified ones,and the total flux decreased with increasing zeolite loading. The solution and diffusion selectivity of hybrid membranes were also measured to explain the pervaporation properties of silicalite-1 filled PDMS membranes.It was found that modification of silicalite-1 with dodecyltrichlorosilane effectively improved the solution and diffusion selectivity of silicalite-1 filled PDMS membranes with high zeolite loading.This may be attributed to the high surface hydrophobicity of modified silicalite-1 and its good integration with PDMS membranes.Both the high separation factor and solution selectivity indicated that modification of silicalite-1 with chlorosilanes was an effective method to improve the selectivity of silicalite-1/PDMS hybrid membranes for ethanol.  相似文献   

4.
Precursor silica nanoparticles can evolve to silicalite-1 crystals under hydrothermal conditions in the presence of tetrapropylammonium (TPA) cations. It has been proposed that in relatively dilute sols of silica, TPA, water, and ethanol, silicalite-1 growth is preceded by precursor nanoparticle evolution and then occurs by oriented aggregation. Here, we present a study of silicalite-1 crystallization in more concentrated mixtures and propose that growth follows a path similar to that taken in the dilute system. Small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and high-resolution transmission electron microscopy (HRTEM) were used to measure nanoparticle size and to monitor zeolite nucleation and early-stage crystal development. The precursor silica nanoparticles, present in the clear sols prior to crystal formation, were characterized using two SAXS instruments, and the influence of interparticle interactions is discussed. In addition, SAXS was used to detect the onset of secondary particle formation, and HRTEM was used to characterize their structure and morphology. Cryo-TEM allowed for in situ visual observation of the nanoparticle population. Combined results are consistent with growth by aggregation of silica nanoparticles and of the larger secondary crystallites. Finally, a unique intergrowth structure that was formed during the more advanced growth stages is reported, lending additional support for the proposal of aggregative growth.  相似文献   

5.
采用silicalite-1对HY型分子筛进行修饰,得到具有核壳结构的复合分子筛HY/silicalite-1。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、N2的吸附-脱附及吡啶吸附红外(Py-FTIR)等手段对不同晶化时间合成的HY/silicalite-1复合分子筛进行了表征,研究了复合分子筛对纤维素水解的催化性能。结果表明,晶化时间直接影响复合分子筛的晶体生长规律和两组分的相对含量,最佳晶化时间为16-24 h,所得到的复合分子筛外貌呈核壳结构,silicalite-1附晶生长在HY型分子筛的表面;随着晶化时间的延长,复合分子筛的表面由胶浊状变为光滑,最终变为鳞片状;其B酸量先减少后增加,而L酸量则先增加后减少。其中,晶化时间为24 h的HY/silicalite-1复合分子筛B酸量最大,L酸量最小,对纤维素水解反应具有良好的催化性能,葡萄糖收率由HY型分子筛催化获得的28.0%大幅提高至45.8%。  相似文献   

6.
采用两步法将不同尺寸的silicalite-1分子筛纳米晶种通过自组装合成了一系列有序介孔silicalite-1分子筛。首先将强碱性的silicalite-1前驱体分别加热不同时间得到纳米晶种,然后在类似合成SBA-15的强酸性条件下组装成有序的介孔材料。合成条件的剧烈变化阻止了分子筛晶种的继续长大,并在三嵌段共聚物模板的诱导下组装成有序介孔材料。这种“自下而上”的方法制备有序介孔分子筛同时包含微孔和介孔。氮气吸脱附结果表明所制备的介孔分子筛材料均表现了很大的比表面积(730 m2/g以上)。  相似文献   

7.
8.
A post-synthesis deposition of vanadium silicalite-1 zeolite nanoparticles in the pores of SBA-15 results in a highly ordered hexagonal templated silica material with V-silicalite zeolitic plugs, giving rise to an increased crystallinity of the amorphous mesoporous walls.  相似文献   

9.
通过焙烧将分散在多孔氧化硅母体中的硝酸镁转化成高分散的MgO物种, 然后使用四丙基氢氧化铵(TPAOH)作为结构导向剂, 将含MgO 的母体通过水热晶化合成MgO/silicalite-1 分子筛复合物. X 射线衍射(XRD)、能量X射线光谱(EDX)和透射电镜(TEM)的结果表明MgO物种被均匀地分散在silicalite-1 分子筛晶体中. 将酸处理脱除氧化镁前后的样品在100%水蒸汽800℃ 条件下老化, 结果表明MgO 的引入有效地提高了分子筛的水热稳定性. 此外, 酸洗脱除MgO/silicalite-1分子筛中的MgO提高了分子筛结晶度, 同时引入了一定的介孔. N2物理吸附-脱附数据证明了酸洗后分子筛中介孔的存在. 水热稳定性的提高和介孔的引入对于在高温下保持催化剂的孔道结构, 提高催化剂的抗积碳能力, 降低催化剂的失活速率以及延长催化剂的使用寿命起着非常重要的作用.  相似文献   

10.
Zeolite nanocrystals were prepared from three-dimensionally ordered mesoporous-imprinted (3DOm-i) silicalite-1 by a fragmentation method involving sonication and dissolution within a certain pH range. 3DOm-i silicalite-1 with spherical elements with diameters ranging from 10 to 40 nm and a wide range of crystal sizes (100-200 nm, 500-600 nm, and 1-2 μm) was used as the starting material. The highest yield (57%) of isolated nanocrystals was obtained for 3DOm-i silicalite-1 with a crystal size of 100-200 nm and a spherical element diameter of 40 nm. The smallest nanocrystals obtained, albeit in very low yields, had a 10 nm diameter. Preparation of stable silicalite-1 nanocrystal suspensions fragmented from 20 and 40 nm 3DOm-i silicalite-1 was demonstrated. Cryogenic transmission electron microscopy showed that the isolated zeolite nanocrystals can be used as seeds for the epitaxial growth of silicalite-1. An application of these findings was demonstrated: silicalite-1 nanocrystal suspensions were used to deposit seed layers on porous α-alumina disks, which were converted to continuous thin (300-400 nm) films by secondary growth that exhibited both high permeances and separation factors (3.5 × 10(-7) mol m(-2) s(-1) Pa(-1) and 94-120, respectively, at 150 °C) for p- and o-xylene.  相似文献   

11.
Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH(-)) and fluoride (F(-)) routes, and ZSM-5 samples with different Si/Al ratios as well as different charge-balancing cations. Full isotherms (0.05-0.95 activity) over the range 25-55 °C are presented, and the lowest total water uptake ever reported in the literature is shown for silicalite-1 made via a fluoride-mediated route wherein internal silanol defects are significantly reduced. At a water activity level of 0.95 (35 °C), the total water uptake by silicalite-1 (F(-)) was found to be 0.263 mmol/g, which was only 12.6%, 9.8%, and 3.3% of the capacity for silicalite-1 (OH(-)), H-ZSM-5 (Si/Al:140), and H-ZSM-5 (Si/Al:15), respectively, under the same conditions. While water adsorption shows distinct isotherms for different MFI-type zeolites due to the difference in the concentration, distribution, and types of hydrophilic sites, the ethanol adsorption isotherms present relatively comparable results because of the overall organophilic nature of the zeolite framework. Due to the dramatic differences in the sorption behavior with the different sorbate-sorbent pairs, different models are applied to correlate and analyze the sorption isotherms. An adsorption potential theory was used to fit the water adsorption isotherms on all MFI-type zeolite adsorbents studied. The Langmuir model and Sircar's model are applied to describe ethanol adsorption on silicalite-1 and ZSM-5 samples, respectively. An ideal ethanol/water adsorption selectivity (α) was estimated for the fluoride-mediated silicalite-1. At 35 °C, α was estimated to be 36 for a 5 mol % ethanol solution in water increasing to 53 at an ethanol concentration of 1 mol %. The adsorption data demonstrate that silicalite-1 made via the fluoride-mediated route is a promising candidate for ethanol extraction from dilute ethanol-water solutions.  相似文献   

12.
We present a lattice model describing the formation of silica nanoparticles in the early stages of the clear-solution templated synthesis of silicalite-1 zeolite. Silica condensation/hydrolysis is modeled by a nearest-neighbor attraction, while the electrostatics are represented by an orientation-dependent, short-range interaction. Using this simplified model, we show excellent qualitative agreement with published experimental observations. The nanoparticles are identified as a metastable state, stabilized by electrostatic interactions between the negatively charged silica surface and a layer of organic cations. Nanoparticle size is controlled mainly by the solution pH, through nanoparticle surface charge. The size and concentration of the charge-balancing cation are found to have a negligible effect on nanoparticle size. Increasing the temperature allows for further particle growth by Ostwald ripening. We suggest that this mechanism may play a role in the growth of zeolite crystals.  相似文献   

13.
Synchrotron small angle X-ray scattering (SAXS) was used to characterize silicalite-1 zeolite crystallization from TEOS/TPAOH/water clear sol. SAXS patterns were recorded over a broad range of length scales, enabling the simultaneous monitoring of nanoparticles and crystals occurring at various stages of the synthesis. A simple two-population model accurately described the patterns. Nanoparticles were modeled by polydisperse core-shell spheres and crystals by monodisperse oblate ellipsoids. These models were consistent with TEM images. The SAXS results, in conjunction with in situ light scattering, showed that nucleation of crystals occurred in a short period of time. Crystals were uniform in size and shape and became increasingly anisotropic during growth. In the presence of nanoparticles, crystal growth was fast. During crystal growth, the number of nanoparticles decreased gradually but their size was constant. These observations suggested that the nanoparticles were growth units in an aggregative crystal growth mechanism. Crystals grown in the presence of nanoparticles developed a faceted habit and intergrowths. In the final stages of growth, nanoparticles were depleted. Concurrently, the crystal growth rate decreased significantly.  相似文献   

14.
A technique that measures the effective density of a zeolite after adsorption from the liquid phase was developed to measure the absolute amounts of liquid mixtures adsorbed on zeolites without using a nonadsorbing solvent. Since the fugacities of the adsorbing components in solution can be dramatically different with or without the addition of a nonadsorbing solvent, this technique measures mixture isotherms that can be used for analyzing pervaporation through zeolite membranes. A nonideal solution, methanol/acetone, was used as an example to show that its adsorption isotherms on silicalite-1 zeolite at 294 K differ dramatically from those measured with the nonadsorbing solvent method. The methanol/acetone fugacity ratio is different for the two methods because of different concentrations in the liquid phase. Methanol preferentially adsorbs on silicalite-1 at low methanol concentrations and acetone preferentially adsorbs at high methanol concentrations. The density bottle method was used to show that n-hexane preferentially adsorbs from n-hexane/3-methylpentane liquid mixtures, and at high n-hexane concentrations, essentially no 3-methylpentane adsorbs, as has been predicted previously by simulations. A larger molecule, 2,2-dimethylbutane, adsorbed so slowly at 294 K that silicalite had only 16% of saturation coverage after 370 h, but it was saturated after 1650 h; at 423 K, saturation was obtained in less than 24 h.  相似文献   

15.
The low-temperature (368 K) synthesis of silicalite-1 nanocrystals in anionic microemulsions is reported. In the presence of AOT/isooctane mixtures silicalite-1 nanocrystals can be formed that are coffin-shaped and approximately 100 x 40 x 200 nm in size. This is in contrast to samples made without the microemulsion under the same conditions where irregular spherical particles approximately 100 nm in diameter are formed. The current work shows that, in contrast to previous work in this area, the anionic microemulsions cannot stabilize colloidal silica due to the strong repulsive electrostatic forces between the anionic silicate species and the surfactant headgroup. The crystal morphology of the silicalite-1 obtained is also shown to be sensitive to the surfactant identity as syntheses using SDS/heptane/butanol mixtures lead to different morphologies. It is also possible to uncouple zeolite nucleation from growth in these systems. This was demonstrated by adding a solution containing 25 nm silicalite-1 nanocrystals to the AOT/isooctane mixture, which leads to large micron-sized spheres of silicalite-1 containing large mesopores. This report demonstrates that anionic microemulsions lead to fundamentally different crystal habits than the nonionic or cationic microemulsions investigated previously. The future outlook for the use of microemulsion-mediated zeolite growth is also discussed.  相似文献   

16.
The crystallization of colloidal silicalite-1 from clear solution is one of the best understood zeolite formation processes. Colloidal silicalite-1 formation involves a self-assembly process in which nanoslabs and nanotablets with a silicalite-1 type connectivity are formed at intermediate stages. During the assembly process, with strongly anisometric particles present, regions appear with orientational correlations, as evidenced with measurements of dynamic light scattering, viscosity, and rotation of polarized light. The presence of such regions rationalizes the unexpected differences between the crystallization kinetics under microgravity and on earth. The discovery of the locally oriented regions sheds new light on currently poorly understood hydrodynamic effects on the zeolite formation processes, such as the influence of stirring on the phases obtained and the subsequent kinetics. Addition of surfactants or polymers modifies the ordering of the zeolitic building units in the correlated regions, and new types of hierarchical materials named zeogrids and zeotiles can be obtained.  相似文献   

17.
The crystal morphology of silicalite-1 was adjusted through a microemulsion-based hydrothermal synthesis. The surfactant cetyltrimethylammonium bromide (CTAB) with cosurfactant butanol was used to form water-in-oil microemulsions containing the silicalite-1 synthesis gel. The crystal morphology of silicalite-1 was adjusted from coffin-shaped to novel rod-shaped and to irregular-shaped nanoparticles by varying the microemulsion composition. Silicalite-1 synthesized in the microemulsion has a smaller size and a more narrow size distribution than that produced by conventional synthesis without the microemulsion. The novel morphology of silicalite-1 may facilitate assembly into films and find applications in separation and catalysis.  相似文献   

18.
Two types of unsupported zeolites (silicalite-1 and silicalite-2) and porous alumina discs supports were prepared by the hydrothermal sol–gel synthesis method. The influence of the raw materials used as SiO2 source, the temperature of the thermal treatment and the presence of the ceramic support on the crystallization of zeolites were studied. The reaction products were characterized by X-ray diffraction (XRD), IR spectroscopy (IR) and scanning electron microscopy (SEM) studies. The SiO2 source had a significant effect on the final zeolite obtained: the use of colloidal silica sol (ZCS) as SiO2 source in the synthesis led to ZSM-11 (silicalite-2) crystals, while the sodium silicate solution (ZSS) produced the ZSM-5 (silicalite-1) type. The presence of the alumina support influences the crystallization process of ZSM-5, as it improves nucleation and the ordering of the crystals.  相似文献   

19.
Butanol, a promising biofuel, can be produced by ABE (acetone, butanol and ethanol) fermentation using e.g. Clostridium acetobutylicum. However, the butanol concentration in the resulting broth is limited to only ca. 20 g/L due to the toxicity for the microorganisms. This low product concentration demands an efficient recovery process for successful commercialization of this process. In this study, a structured adsorbent in the form of steel monolith coated with a silicalite-1 film was prepared using the in situ growth method. The adsorbent was carefully characterized by SEM and XRD. The performance of the adsorbent was evaluated by performing breakthrough experiments at room temperature using model ABE fermentation broths and the performance was compared with that of traditional adsorbents in the form of beads. The structured silicalite-1 adsorbent showed less saturation loading time as compared to commercial binder free silicalite-1 beads, reflecting the different dimensions of the columns used, set by experimental constraints. Studies of the desorption process showed that by operating at appropriate conditions, butanol with high concentration i.e. up to 95.2 wt% for butanol–water model system and 88.5 wt% for ABE fermentation broth can be obtained using the structured silicalite-1 adsorbent. Commercial silicalite-1 beads also showed good selectivity but the concentration of butanol in the desorbed product was limited to 70 % for the butanol–water model system and 69 % for ABE fermentation broth, probably as a result of entrained liquid between the beads.  相似文献   

20.
The b-oriented monolayers of microsized silicalite-1 crystals have been manually assembled on glass plate supported poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), chitosan, and poly(methyl methacrylate) (PMMA) thin films via hydrogen bonding with much enhanced binding strength and satisfactory degrees of coverage and close packing. The exerted pressure and rubbing time in the manual assembly do not affect the binding strength of the silicalite-1 monolayer on the glass plate supported polymeric film. This manual assembly has been further applied to fabricate zeolite monolayers on commercially available Plexiglas surfaces and b-oriented multilayered films of silicalite-1 crystals on glass plates. The assembly method established in this study provides a feasible way to produce zeolite monolayers on polymer-modified solid substrates and Plexiglas and to fabricate zeolite-polymer composite membranes by means of the layer-by-layer technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号