首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studying disorder in graphite-based systems by Raman spectroscopy   总被引:3,自引:0,他引:3  
Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis. Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes. The disorder-induced D and D' Raman features, as well as the G'-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects. In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed. We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers. Once established, this knowledge provides a powerful machinery to understand newer forms of sp(2) carbon materials, such as the recently developed pitch-based graphitic foams. Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (E(laser)) and the in-plane size (L(a)) of nano-graphites are presented and compared with experimental results. The status of this research area is assessed, and opportunities for future work are identified.  相似文献   

2.
A comparative study of carbon bonding states and Raman spectra is reported for amorphous diamondlike carbon films deposited using 120 fs and 30 ns pulsed laser ablation of graphite. The presence of sp(1) chains in femtosecond carbon films is confirmed by the appearance of a broad excitation band at 2000-2200 cm(-1) in UV-Raman spectra. Analysis of Raman spectra indicates that the concentrations of sp(1)-, sp(2)-, and sp(3)-bonded carbon are approximately 6%, approximately 43%, and approximately 51%, respectively, in carbon films prepared by femtosecond laser ablation. Using surface enhanced Raman spectroscopy, specific vibrational frequencies associated with polycumulene, polyyne, and trans-polyacetylene chains have been identified. The present study provides further insight into the composition and structure of tetrahedral carbon films containing both sp(2) clusters and sp(1) chains.  相似文献   

3.
The reactions of methyl radicals with large (up to C(96)H(24)) polycyclic aromatic hydrocarbons (PAHs) are studied by density functional calculations to shed light on the experimentally observed deposition of carbon on highly oriented pyrolytic graphite (HOPG), which occurs when hot HOPG (decorated by nanometre-sized defects) is exposed to methyl radicals. The equilibrium structures of the reaction products, together with transition structures for PAHs up to the size of phenanthroperylene, are determined using the density functionals B3LYP, TPSSh, BP86 and TPSS. The structures are analysed by computing the pi orbital axis vector (POAV) and the altitude of the reactive carbon above the molecular plane of the PAH. The strongest C-CH(3) bonds are found at the edges of the PAHs, where the s character of the C orbital involved in the bond is roughly 25 % (sp(3) hybrid orbital). Carbon atoms inside the PAH form bonds with the methyl radical through atomic orbitals with about 16 % s character in the POAV analysis. These bonds are much weaker than those at the edges of the PAH, while the reactive carbon has moved about 40 pm above the molecular plane. At the edges, the PAH carbon atoms do not leave the molecular plane to this extent. The computed barrier heights and geometrical parameters of the transition structures are in agreement with Hammond's postulate, and the relative energies of all of the equilibrium structures can be rationalized by Hückel molecular orbital (HMO) theory.  相似文献   

4.
Confocal Raman microscopic measurements were performed at room temperature on the Langmuir-Blodgett (LB) monolayer of 10,12-pentacosadiynoic acid (DA) prepared on surface enhanced Raman scattering (SERS) active Ag island films, two-dimensional (2D) Raman images of which exhibit bright and dim spots on a dark background. The measurements performed by focusing the excitation laser light (488 nm) on the dark background indicate the prompt appearance of the Raman bands (1515 and 2115 cm(-1)) due to polydiacetylene (PDA) in the red phase and subsequent diminution of the Raman bands. On the other hand, the spectra observed by focusing the excitation laser spot on the dim and bright spots exhibit almost random fluctuations, giving rather narrow Raman bands in the 1620-1000 cm(-1) region, which appear and disappear temporarily with varying intensities under the continuous irradiation at 488 nm. Broad Raman bands appear around 1580 and 1360 cm(-1), which are ascribable to amorphous carbon, at a later stage of the observation, the intensities from the bright spot being more than 100 times stronger than those from the dim spot. The narrow bands are ascribed to a series of carbonaceous intermediates such as polyenes, graphite sheets with various sizes, and folded or reorganized forms of the sheets including carbon nanotubes and fullerenes, which are formed during the conversion of PDA to amorphous carbon. The random spectral fluctuation was interpreted by considering that the intermediates undergo thermally activated diffusion and get temporarily in contact with the SERS-active site, resulting in the enhancement of their Raman bands and the fluctuation.  相似文献   

5.
In the present study, a systematic vibrational spectroscopic investigation for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile (TFB), aided by electronic structure calculations has been carried out. The electronic structure calculations – ab initio (RHF) and hybrid density functional methods (B3LYP) – have been performed with 6-31G* basis set. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. The results of the calculations have been used to simulate IR and Raman spectra for TFB that showed excellent agreement with the observed spectra. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed. A complete assignment of the observed spectra has been proposed.  相似文献   

6.
The excitation spectra and the structural properties of highly hydroxylated C(60)(OH)(x) fullerenes (so-called fullerenols) are analyzed by comparing optical absorption experiments on dilute fullerenol-water solutions with semiempirical and density functional theory electronic structure calculations. The optical spectrum of fullerenol molecules with 24-28 OH attached to the carbon surface is characterized by the existence of broad bands with reduced intensities near the ultraviolet region (below approximately 500 nm) together with a complete absence of optical transitions in the visible part of the spectra, contrasting with the intense absorption observed in C(60) solutions. Our theoretical calculations of the absorption spectra, performed within the framework of the semiempirical Zerner intermediate neglect of diatomic differential overlap method [Reviews in Computational Chemistry II, edited by K. B. Lipkowitz and D. B. Boyd (VCH, Weinheim, 1991), Chap. 8, pp. 313-316] for various gas-phase-like C(60)(OH)(26) isomers, reveal that the excitation spectra of fullerenol molecules strongly depend on the degree of surface functionalization, the precise distribution of the OH groups on the carbon structure, and the presence of impurities in the samples. Interestingly, we have surprisingly found that low energy atomic configurations are obtained when the OH groups segregate on the C(60) surface forming molecular domains of different sizes. This patchy behavior for the hydroxyl molecules on the carbon surface leads in general to the formation of fullerene compounds with closed electronic shells, large highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps, and existence of an excitation spectrum that accounts for the main qualitative features observed in the experimental data.  相似文献   

7.
The two-photon-resonant first hyperpolarizabilities associated with hyper-Rayleigh and hyper-Raman scattering are reported for 4-dimethylamino-4-nitrostilbene in 1,4-dioxane, dichloromethane, acetonitrile, and methanol, and for an ionic analog, 4-N,N-bis(6-(N,N,N-trimethylammonium)-hexyl)amino-4-nitrostilbene dibromide in methanol and water. Resonance Raman and hyper-Raman excitation profiles are also measured and modeled. The resonance Raman and hyper-Raman spectra show very similar relative intensities which do not vary much as the excitation frequency is tuned across the lowest-energy strong linear absorption band, suggesting that a single resonant electronic state dominates the one- and two-photon absorptions in this region. The absorption, resonance Raman, and hyper-Raman profiles can be simulated reasonably well with a common set of parameters. The peak resonant (absolute value of beta)2, measured by hyper-Rayleigh scattering, varies by about 50% over the range of solvents examined and shows a weak correlation with the linear absorption maximum, with the redder-absorbing systems exhibiting larger peak hyperpolarizabilities. The experimental hyper-Rayleigh intensities are higher than those calculated, possibly reflecting contributions from nonresonant electronic states.  相似文献   

8.
Benzothiophene and dibenzothiophene have been studied by Raman microspectroscopy using a 785 nm excitation wavelength. The spectra obtained have been compared with the previously measured spectra of idrialite, a complex natural mineral composed entirely of cata-condensed polyaromatic hydrocarbons (PAHs), usually containing a thiophenic or aliphatic five-membered ring. For comparison, the Raman spectra of 2,3-benzofluorene crystals have been obtained for the first time. Some of the bands in the idrialite spectra are attributed to specific vibrational modes of thiophene or fluorene-type PAHs, especially in the region below 1000 cm(-1). These modes at 495, 705 and 750 cm(-1) along with C-H or C-H(2) stretching modes around 3000 cm(-1) can be then used to distinguish such groups of PAHs in complicated organic mineral mixtures like idrialite.  相似文献   

9.
The results of time-dependent density functional theory (TDDFT) calculations of resonance Raman intensities are combined with experimental deep-ultraviolet resonance Raman measurements at a single wavelength, i.e., 244 nm, in order to test the possibility to distinguish several very similar compounds. Pyrene and three of its substituted derivatives, in which a single hydrogen atom has been replaced by a halogen atom, are compared. The fixed 244 nm excitation wavelength overlapped with the same electronic transition of the four pyrenes. Ground-state calculations using the BP86 exchange-correlation functional were used to predict the Raman frequencies, whereas excited-state calculations have been carried out employing the "statistical averaging of (model) orbital potentials" (SAOP) potential within a linear-response TDDFT framework in combination with the short-time approximation of resonance Raman intensities. In view of the simplistic theoretical approach, we find a surprisingly good agreement between the simulated and measured resonance Raman spectra of pyrene and its substituted analogues in terms of frequencies and intensities, which shows that the calculations can be used reliably to interpret the experimental spectra. With this combined information, it is possible to find criteria to distinguish the compounds under investigation, although many features of their vibrational spectra are similar.  相似文献   

10.
11.
Electron-phonon coupling in oligo(para-phenylene)s is addressed in terms of the off-resonance Raman intensities of two distinct modes at 1220 and 1280 cm(-1). On the basis of Albrecht's theory, vibrational coupling and Raman intensities are calculated from first-principles quantum-chemical methods. A few-state model is used to evaluate the dependence of the mode intensities on oligomer length, planarity, and excitation wavelength. The link between electron delocalizationconjugation and Raman intensities is highlighted. Extending on prior studies, the present work focuses on providing an in-depth understanding of the origin of this correlation in addition to reproducing experimental findings. The model applied here allows us to interpret the results on a microscopic, quantum-mechanical basis and to relate the observed trends to the molecular orbital structure and nature of the excited states in this class of materials. We find quantitative agreement between the results of the calculations and those of measurements performed on oligo(para-phenylene)s of various chain lengths in the solid state and in solution.  相似文献   

12.
Infrared and Raman spectra of materials found in tissue specimens submitted for histopathologic diagnosis have been recorded. These foreign materials range in size from approximately 5 to 50 microm, and the vibrational spectra have been used to identify them. Examples include cholesterol and polytetrafluoroethylene (PTFE) in an implant case, polyethylene terephthalate (PET) and polyacrylonitrile (PAN) in a pilonidal cyst, and carbenicillin in a skin biopsy. In some instances, either the infrared or Raman spectra were sufficient to make a definitive identification, while in other cases both were necessary. Because some of the samples fluoresced with visible excitation at 532 nm, FT-Raman spectra with 1064-nm excitation were also recorded. The flexibility of sampling for vibrational microspectroscopy and the value of the recorded data in assisting pathologists render medical diagnoses in the examples cited and other cases are discussed.  相似文献   

13.
The vibrational Stark effect of a series of small molecules has been calculated by means of the semiempirical AM1 method through addition of the electron–field interaction term in the one-electron Hamiltonian. Optimized geometrical parameters along with harmonic frequencies and line intensities are determined for different strengths of the applied uniform electric field. The perturbed spectra are compared with theoretical studies carried out at the ab initio level and with experimental results. The vibrational Stark effect of the retinal molecule is also computed, showing that this kind of study is feasible in systems of biochemical interest. © 1992 by John Wiley & Sons, Inc.  相似文献   

14.
Solubilization of single walled carbon nanotubes (SWNT) in the presence of polycyclic aromatic hydrocarbons (PAHs) such as p-terphenyl and anthracene has been shown. The suspensions formed are stable for periods greater than 48 months but to date experimental research is scarce regarding the interactions that are taking place. Spectroscopic analysis such as Raman and fluorescence are used to probe the interactions occurring between the PAHs and the SWNT over a wide concentration range. Previous studies show the fluorescence of the PAHs is quenched on interaction with SWNT and in the case of p-terphenyl, the spectrum is red shifted. This result prompted a study of a large range of concentrations to quantify the degree of interaction between the SWNT and PAHs. It was found at high concentrations that both the PAHs and SWNT formed aggregates and at lower concentrations it was found that free PAHs and isolated SWNT were interacting. The radial breathing modes (RBMs) in Raman spectroscopy gave detail as to how diameter selective the PAH samples are when compared to the pristine SWNT modes. An increase in the wavenumber of the RBMs for both composite spectra was observed and it is believed that such a result is due to the debundling of the SWNT on interaction with the PAHs. It was also found that anthracene and p-terphenyl selectively interact with SWNT and the selected SWNT were found to be within a distinct diameter range and possessed unique physical properties.  相似文献   

15.
Resonance Raman scattering with the Q band of CuTPP shows a peculiar intensity pattern; bands due to combinations and overtones are strong, whereas the corresponding fundamentals are very weak. By a quantitative analysis of excitation profiles, this phenomenon has been fully accounted for on the basis of the vibronic theory of Raman intensities. Vibronic coupling parameters between the Q and B states of CuTPP have been obtained.  相似文献   

16.
《Tetrahedron》1986,42(5):1265-1274
The geometry, complete harmonic force field and dipole moment derivatives have been computed for 4-methylpyridine at the Hartree-Fock level using a 4-21 basis set of Gaussian orbitals. A set of eleven scale factors, six of which were previously derived from benzene and the other five for the vibrational motions of the methyl group from toluene by fitting their computed force fields to their observed vibrational spectra, was used to scale the computed harmonic force constants of 4-methylpyridine. The vibrational frequencies and the associated infrared absorption intensities of 4-methyl -pyridine were then predicted from this scaled force field without any fitting to the experimental data of 4-methylpyridine. Comparison with experimental spectra permitted a few corrections to be made in previous experimental or semiempirical assignments. The mean-deviations between experimental and predicted frequencies was only 5.6 cm-1 for the non-CH stretching frequencies or 8.3 cm-1 overall. Computed intensities are qualitatively m agreement with experiment. The optimization of scale factors for the five methyl vibrational motions produced a trivial improvement in the fit.  相似文献   

17.
The resonance Raman spectra of dilute cytochrome c and oxyhemoglobin solutions obtained with high peak power (>1 MW) laser excitation at 532.0 nm and optical multichannel analysis (OMA) are presented. The frequencies and intensities of bands in resonance Raman spectra obtained under these conditions are directly comparable to spectra derived from 0.15 W peak power excitation using cw lasers. No anomalous spectral features are observed. These pulsed-laser/OMA spectra are used to comment on the applicability of such techniques for time-resolved resonance Raman spectroscopy of biopolymers.  相似文献   

18.
Resonant Raman scattering spectra of single-walled carbon nanotube–sodium dodecyl sulfate (SWNT–SDS) bundles adsorbed on Au electrodes have been investigated in aqueous electrolytes. Raman intensities of the radial breathing mode (RBM) with 785-nm laser excitation were monitored at different electrode potentials between −0.5 and +0.8 V relative to the SCE. Six resolved RBM peaks assignable to different diameter tubes all decreased in intensity when the electrode was positively biased, because of depletion of valence-band electrons associated with resonant excitation. The attenuation occurred at more positive potentials for narrower-diameter tubes with higher RBM frequencies consistent with their larger bandgaps. The results suggest the Fermi level is equilibrated in bundled SWNTs in contrast with the large Fermi-level shifts reported for isolated SWNTs.  相似文献   

19.
This paper describes the development of active materials for optically enhanced Raman and fluorescence spectroscopy. The substrates for surface-enhanced Raman scattering investigated in this study involved silver-coated microspheres on glass plates. The effect of various experimental parameters, such as angle of incidence and excitation wavelength, were investigated. The substrate used for surface luminescence analysis consisted of a cellulose membrane coated with fumed silica microparticles, to enhance the sensitivity of analysis. Examples of analysis of benzo[a]pyrene and its derivatives are used to illustrate the efficacy of the analytical techniques.  相似文献   

20.
Quantum-chemical methods have been used for the calculation of the intensities of Raman-active internal and external modes in crystalline oxamide. In a first step the frequencies and eigenvectors of the modes in oxamide are calculated by use of the concept of a flexible vibrating molecule within the intermolecular atom-atom forces. The quantum-mechanical aspects are considered and finally, a semiempirical method is extended to cover the relative Raman intensities of the external and internal modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号