首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We formulate quantum group Riemannian geometry as a gauge theory of quantum differential forms. We first develop (and slightly generalise) classical Riemannian geometry in a self-dual manner as a principal bundle frame resolution and a dual pair of canonical forms. The role of Levi-Civita connection is naturally generalised to connections with vanishing torsion and cotorsion, which we introduce. We then provide the corresponding quantum group and braided group formulations with the universal quantum differential calculus. We also give general constructions, for example, including quantum spheres and quantum planes.  相似文献   

2.
We introduce the notion of a braided group. This is analogous to a supergroup with Bose-Fermi statistics ±1 replaced by braid statistics. We show that every algebraic quantum field theory in two dimensions leads to a braided group of internal symmetries. Every quantum group can be viewed as a braided group.  相似文献   

3.
The paper contains a complete theory of factors for ray representations acting in a Hilbert bundle, which is a generalization of the known Bargmanns theory. With its help, we have reformulated the standard quantum theory so that the gauge freedom emerges naturally from the very nature of quantum laws. The theory is of primary importance in the investigations of covariance (in contradistinction to symmetry) of a quantum theory which possesses a nontrivial gauge freedom. In that case the group in question is not any symmetry group but a covariance group only – the case not yet investigated in depth. It is shown that the factor of a covariance group representation depends on space and time when the system in question possesses gauge freedom. In nonrelativistic theories, the factor depends on time only. In relativistic theory, the Hilbert bundle is built over spacetime while in the nonrelativistic case-over time. We explain two applications of this generalization: in the theory of a quantum particle in gravitational field in the nonrelativistic limit, and in quantum electrodynamics.  相似文献   

4.
We develop a general framework for quantum field theory on noncommutative spaces, i.e., spaces with quantum group symmetry. We use the path integral approach to obtain expressions for n-point functions. Perturbation theory leads us to generalised Feynman diagrams which are braided, i.e., they have non-trivial over- and under-crossings. We demonstrate the power of our approach by applying it to φ4-theory on the quantum 2-sphere. We find that the basic divergent diagram of the theory is regularised. Received: 3 July 1999 / Accepted: 10 November 2000  相似文献   

5.
6.
WUNing 《理论物理通讯》2003,40(4):429-434
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian has strict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory. Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar field minimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian for scalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressed by gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.  相似文献   

7.
In spite of its simplicity and beauty, the Mathai–Quillen formulation of cohomological topological quantum field theory with gauge symmetry suffers two basic problems: i) the existence of reducible field configurations on which the action of the gauge group is not free and ii) the Gribov ambiguity associated with gauge fixing, i. e. the lack of global definition on the space of gauge orbits of gauge fixed functional integrals. In this paper, we show that such problems are in fact related and we propose a general completely geometrical recipe for their treatment. The space of field configurations is augmented in such a way to render the action of the gauge group free and localization is suitably modified. In this way, the standard Mathai–Quillen formalism can be rigorously applied. The resulting topological action contains the ordinary action as a subsector and can be shown to yield a local quantum field theory, which is argued to be renormalizable as well. The salient feature of our method is that the Gribov problem is inherent in localization, and thus can be dealt within a completely equivariant setting, whereas gauge fixing is free of Gribov ambiguities. For the stratum of irreducible gauge orbits, the case of main interest in applications, the Gribov problem is solvable. Conversely, for the strata of reducible gauge orbits, the Gribov problem cannot be solved in general and the obstruction may be described in the language of sheaf theory. The formalism is applied to the Donaldson–Witten model. Received: 22 July 1996 / Accepted: 21 October 1996  相似文献   

8.
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.  相似文献   

9.
Quantum gauge theory of gravity is formulated based on gauge principle. Because the Lagrangian hasstrict local gravitational gauge symmetry, gravitational gauge theory is a perturbatively renormalizable quantum theory.Gravitational gauge interactions of scalar field are studied in this paper. In quantum gauge theory of gravity, scalar fieldminimal couples to gravitational field through gravitational gauge covariant derivative. Comparing the Lagrangian forscalar field in quantum gauge theory of gravity with the corresponding Lagrangian in quantum fields in curved space-time, the definition for metric in curved space-time in geometry picture of gravity can be obtained, which is expressedby gravitational gauge field. In classical level, the Lagrangian and Hamiltonian approaches are also discussed.  相似文献   

10.
WU Ning 《理论物理通讯》2004,41(3):381-384
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.  相似文献   

11.
Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.  相似文献   

12.
WUNing 《理论物理通讯》2004,42(4):543-552
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein‘s field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.  相似文献   

13.
14.
15.
In this article we analyse a two dimensional lattice gauge theory based on a quantum group. The algebra generated by gauge fields is the lattice algebra introduced recently by A.Yu. Alekseev, H. Grosse and V. Schomerus in [1]. We define and study Wilson loops. This theory is quasi-topological as in the classical case, which allows us to compute the correlation functions of this theory on an arbitrary surface.Laboratoire Propre du CNRS UPR 14  相似文献   

16.
We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers-Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the category of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Chern class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.  相似文献   

17.
A mathematically rigorous relativistic quantum Yang–Mills theory with an arbitrary semisimple compact gauge Lie group is set up in the Hamiltonian canonical formalism. The theory is nonperturbative, without cut-offs, and agrees with the causality and stability principles. This paper presents a fully revised, simplified, and corrected version of the corresponding material in the previous papers Dynin ([11] and [12]). The principal result is established anew: due to the quartic self-interaction term in the Yang–Mills Lagrangian along with the semisimplicity of the gauge group, the quantum Yang–Mills energy spectrum has a positive mass gap. Furthermore, the quantum Yang–Mills Hamiltonian has a countable orthogonal eigenbasis in a Fock space, so that the quantum Yang–Mills spectrum is point and countable. In addition, a fine structure of the spectrum is elucidated.  相似文献   

18.
19.
20.
The path-integral approach to quantum field theory assigns special importance to finite action Euclidean solutions of classical field equations. In Yang-Mills gauge theories, the instanton solutions of classical field equations with self-dual field strength have given rise to a new, nonperturbative treatment of the quantum field theory and its vacuum state. Since gravitation is also a species of gauge theory, one might think that similar phenomena would occur in gravity. The authors recently sought and found a new self-dual solution to Euclidean gravity which plays a role parallel to that of the Yang-Mills instanton. Gravitational instantons now promise to yield new insights into the nature of quantum gravity.This essay received the second award from the Gravity Research Foundation for the year 1979-Ed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号