首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A convergent, complementary, synthetic approach to the contiguously linked tris-oxazole units 10, 11 and 12 in telomestatin (1) and YM-216391 (2) is described. The route involves coupling reactions between oxazole 4-carboxylic acids, viz 16a, 16c, 16d and oxazole 2-substituted methylamines, viz 16b, 16e, 17, leading to the amides 18 and 21, followed by cyclodehydrations to the corresponding bis-oxazole oxazolines, e.g. 19, and oxidations of the latter using well-established protocols. The tris-oxazoles 11 and 12 were next converted stepwise into the hexa-oxazole bis-macrolactams 33. Although the bis-macrolactams 33 (cf. 28) could be converted into the corresponding oxazoline-hexa-oxazoles 34 and to the enamides 35, neither of these intermediates could be elaborated to the hepta-oxazole 30en route to telomestatin 1. Likewise, neither the hexa-oxazole 47 or application of an intramolecular Hantzsch oxazole ring-forming reaction from 44b allowed access to the advanced polyoxazole-macrolactam intermediates 48 and 30a, respectively, towards telomestatin. Combination of the tris-oxazole based methylamine 70 with the dipeptide carboxylic acid 71 derived from D-valine and L-isoleucine, leads to the corresponding amide which, in two straightforward steps, is converted into the -amino acid 78. Macrolactamisation of 78, using HATU, next produces the cyclopeptide 79 which is then elaborated to the thiazole and oxazole based cyclopeptide YM-216391 (2). The synthetic cyclopeptide 2 is shown to be the enantiomer of the natural product isolated from Streptomyces nobilis.  相似文献   

2.
[structure: see text] Various approaches to the indole bis-oxazole fragment of the marine secondary metabolite diazonamide A are described, all of which feature dirhodium(II)-catalyzed reactions of diazocarbonyl compounds in key steps. Thus, 3-bromophenylacetaldehyde is converted into an alpha-diazo-beta-ketoester, dirhodium(II)-catalyzed reaction of which with N-Boc-valinamide resulted in N-H insertion of the intermediate rhodium carbene to give a ketoamide that readily underwent cyclodehydration to give (S)-2-(1-tert-butoxycarbonylamino)-2-methylpropyl]-5-(3-bromobenzyl)oxazole-4-carboxamide, after ammonolysis of the initially formed ester. This aryl bromide was then coupled to a 3-formyl-indole-4-boronate under Pd catalysis to give the expected biaryl. Subsequent conversion of the aldehyde group into a second alpha-diazo-beta-ketoester gave a substrate for an intramolecular carbene N-H insertion, although attempts to effect this cyclization were unsuccessful. A second approach to an indole bis-oxazole involved an intermolecular rhodium carbene N-H insertion, followed by oxazole formation to give (S)-2-[1-tert-(butoxycarbonylamino)-2-methylpropyl]-5-methyloxazole-4-carboxamide. A further N-H insertion of this carboxmide with the rhodium carbene derived from ethyl 2-diazo-3-[1-(2-nitrobenzenesulfonyl)indol-3-yl]-3-oxopropanoate gave a ketoamide, cyclodehydration of which gave the desired indole bis-oxazole. Finally, the boronate formed from 4-bromotryptamine was coupled to another diazocarbonyl-derived oxazole to give the corresponding biaryl, deprotection and cyclization of which produced a macrocyclic indole-oxazole derivative. Subsequent oxidation and cyclodehydration incorporated the second oxazole and gave the macrocyclic indole bis-oxazole.  相似文献   

3.
The parallel synthesis of bis-oxazole peptidomimetics starting from Boc-aminoacids and Serine-methyl ester is described. This work presents the synthesis of oxazole aminoacid building blocks in solution phase and their utilization for the solid phase peptide synthesis of a library of diverse bis-oxazole peptidomimetics in good overall yields.  相似文献   

4.
[reaction: see text] An efficient five-step synthesis of 1,6-naphthyridone 3b, a p38 mitogen-activated protein (MAP) kinase inhibitor intermediate, in 32% overall yield starting from acetonedicarboxylate (ADC) is described. The synthesis began with a selective monoamidation of ADC dimethyl ester enolate 9. A novel concomitant enamine formation and an imide cyclization afforded the nitrogen differentially protected enamide imide 12. Treatment of 12 with KO(t)Bu and 3-ethoxyacrylate produced lactam 15 quantitatively, which was converted to tetrachloronaphthyridone 19 via a one-pot p-methoxybenzyl (PMB) deprotection and bischlorination. A highly regioselective Pd(OAc)2/IMes-catalyzed Suzuki coupling completed the synthesis.  相似文献   

5.
Atkins JM  Vedejs E 《Organic letters》2005,7(15):3351-3354
[reaction: see text]. Methodology has been developed to prepare bis-oxazoles via a two-stage iterative process. The sequence begins with C(2)-chlorination of a lithiated oxazole using hexachloroethane. Generation of the C(2)-C(4)(') bond by S(N)Ar substitution with TosMIC anion, followed by conversion to the heterocycle in a one-pot reaction with glyoxylic acid monohydrate, affords the desired bis-oxazole in good yield and purity. The two-stage process allows for efficient synthesis of a tris-oxazole and the first iterative preparation of a tetra-oxazole.  相似文献   

6.
The first synthesis of the unusual bis-oxazole natural product siphonazole is reported, both oxazole rings being constructed using rhodium carbene chemistry.  相似文献   

7.
The details of the first syntheses of the unusual bis-oxazole natural products siphonazole and its O-methyl derivative are reported. The cinnamyl substituted oxazole was constructed using diazocarbonyl chemistry, whereby the cinnamamide was reacted with the rhodium carbene derived from methyl 2-diazo-3-oxobutanoate to give a beta-ketoamide that was cyclodehydrated to the corresponding oxazole-4-ester. Reduction to the corresponding aldehyde was followed by coupling with a zinc reagent derived from methyl 2-iodomethyl-5-methyloxazole-4-carboxylate, also prepared using rhodium carbene chemistry, to give, after oxidation of the resulting secondary alcohol, the desired bis-oxazole ketone. The syntheses were completed by hydrolysis of the ester and coupling of the 2,4-pentadienylamine side chain.  相似文献   

8.
The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C, as well as synthesis of simplified lobatamide analogues, is reported. Cu(I)-mediated enamide formation methodology has been developed to prepare the highly unsaturated enamide side chain of the natural product and analogues. A key fragment coupling employs base-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Three additional stereoisomers of lobatamide C have been prepared using related synthetic routes. The stereochemistry at C8, C11, and C15 of lobatamide C was assigned by comparison of stereoisomers and X-ray analysis of a crystalline derivative. Synthetic lobatamide C, stereoisomers, and simplified analogues have been evaluated for inhibition of bovine chromaffin granule membrane V-ATPase. The salicylate phenol, enamide NH, and ortho-substitution of the salicylate ester have been shown to be important for V-ATPase inhibitory activity.  相似文献   

9.
The phorboxazoles are mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic products that embody polyketide domains joined via two serine-derived oxazole moieties. Total syntheses of phorboxazole A and analogues have been developed that rely upon the convergent coupling of three fragments via biomimetically inspired de novo oxazole formation. First, the macrolide-containing domain of phorboxazole A was assembled from C3-C17 and C18-C30 building blocks via formation of the C16-C18 oxazole, followed by macrolide ring closure involving an intramolecular Still-Genarri olefination at C2-C3. Alternatively, a ring-closing metathesis process was optimized to deliver the natural product's (2Z)-acrylate with remarkable geometrical selectivity. The C31-C46 side-chain domain was then appended to the macrolide by a second serine amide-derived oxazole assembly. Minimal deprotection then afforded phorboxazole A. This generally effective strategy was then dramatically abbreviated by employing a total synthesis approach wherein both of the natural product's oxazole moieties were installed simultaneously. A key bis-amide precursor to the bis-oxazole was formed in a chemoselective one-pot, bis-amidation sequence without the use of amino or carboxyl protecting groups. Thereafter, both oxazoles were formed from the key C18 and C31 bis-N-(1-hydroxyalkan-2-yl)amide in a simultaneous fashion, involving oxidation-cyclodehydrations. This synthetic strategy provides a total synthesis of phorboxazole A in 18% yield over nine steps from C3-C17 and C18-C30 synthetic fragments. It illustrates the utility of a synthetic design to form a mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic product based upon biomimetic oxazole formation initiated by amide bond formation to join synthetic building blocks.  相似文献   

10.
Treatment of a 1 : 1 mixture of the thiazole-based amino acids 8a and 8b with FDPP-i-Pr(2)NEt in CH(3)CN gave a mixture of the cyclic trimers 14, 15, 16 and 17 and the cyclic tetramers 19 and 23 in the ratio 2 : 7 : 5 : 8 : 1 : 1 and in a combined yield of 70%. Separate coupling reactions between the bisimidazole amino acid 45 and the thiazole/oxazole amino acids 43a and 42a in the presence of FDPP-i-Pr(2)NEt led to the bisimidazole based cyclic trimers 55 and 57 respectively (54-57%) and to the cyclic tetramer 56 (8-11%). Similar coupling reactions involving the bisthiazole and bisoxazole amino acids 49 and 47 with the imidazole/oxazole/thiazole amino acids 41a, 42a and 43a gave rise to the library of oxazole, thiazole and imidazole-based cyclic peptides 58, 59, 60, 61, 62, 63, 64 and 65. A coupling reaction between the bisthiazole amino acid 49 and the oxazole amino acid 73 led to an efficient (36% overall) synthesis of bistratamide H (67) found in the ascidian Lissoclinum bistratum. Coupling reactions involving oxazolines with thiazole amino acids were less successful. Thus, a coupling reaction between the phenylalanine-based oxazoline amino acid 71a and either the thiazole amino acid 8a or the bisthiazole amino acid 74 gave only a 2% yield of the cyclic hexapeptide didmolamide A (4) found in the ascidian Didemnum molle. Didmolamide B (68) was obtained in 9% yield from a coupling reaction between 74 and the phenylalanine threonine amino acid 72, using either FDPP or DPPA.  相似文献   

11.
The total synthesis and stereochemical assignment of the potent antitumor macrolide lobatamide C is reported. The synthesis involves Cu(I)-mediated enamide formation and Na(2)CO(3)-mediated esterification of a beta-hydroxy acid and a salicylate cyanomethyl ester. Macrolactonization was accomplished using a Mitsunobu protocol. The stereochemical assignment of lobatamide C was achieved by Mosher ester analysis and comparison with prepared stereoisomers.  相似文献   

12.
Intermolecular alkylation of the aziridinyl oxazole 20 using PhSO(2)CH(2)CH(2)OTf is possible despite the presence of potentially nucleophilic aziridine nitrogen. The resulting oxazolium salt 22 reacts with BnNMe(3)(+)CN(-) to produce the azomethine ylide 24b via electrocyclic ring opening of an oxazoline 23b. Internal cycloaddition affords 26 in 66% yield. After saponification and base-induced cleavage of the N-phenylsulfonylethyl group, conventional cyclization provides access to 33. Deprotection and DDQ oxidation completes the synthesis of the aziridinomitosene derivative 9b. The starting cis-disubstituted aziridine ester 16 can be prepared by the aza-Darzens reaction of 15 with tert-butyl chloroacetate.  相似文献   

13.
A concise total synthesis of the potent cytotoxic marine natural products salicylihalamide A and B (la, b) is reported. Key steps of our approach were the asymmetric hydrogenation reactions of beta-keto esters 18 and 32 catalyzed by [((S)-BINAP)Ru-Cl2]2. NEt3 and the cyclization of the macrolide core by ring closing olefin metathesis (RCM) using the "second-generation" ruthenium carbene complex 24 as the catalyst which bears an imidazol-2-ylidene ligand. The EIZ ratio obtained in this macrocyclization reaction was determined by the protecting groups at the remote phenolic OH group of the cyclization precursor. The elaboration of the resulting cycloalkene 37 into the final target involved a CrCl2-mediated synthesis of vinyliodide 49 which, after deprotection, did undergo a copper-catalyzed cross-coupling process with the (Z,Z)-configurated carboxamide 42 to form the labile enamide moiety of 1. Compound 42 was derived from a palladium-catalyzed Negishi coupling between butynylzinc chloride and 3-iodoacrylate 39 followed by a Lindlar reduction of enyne 40 thus obtained and a final aminolysis of the ester group.  相似文献   

14.
报道了一种新型的Zn/Y双金属接力催化的串联反应,该方法通过Zn(OTf)2和Y(OTf)3接力催化,一锅法进行分子内环异构化/分子间阿尔德-烯反应构建α-羟基酰胺噁唑衍生物.产物的形成主要是由Zn(OTf)2活化炔丙基酰胺的叁键发生分子内的环化反应构建噁唑啉中间体,由Y(OTf)3催化1-苄基吲哚啉-2,3-二酮类化合物,继而由噁唑啉中间体与1-苄基吲哚啉-2,3-二酮类化合物发生分子间阿尔德-烯反应,实现了α-羟基酰胺噁唑衍生物的合成.优化部分的对比实验证实,Zn(OTf)2和Y(OTf)3的存在对于该串联反应都是必须条件.所有反应都是将各反应物和试剂一次性加入,在空气氛围下100℃加热进行反应.该方法反应条件简单、原子经济性高、官能团兼容性好,对噁唑衍生物合成具有重要的意义.  相似文献   

15.
An efficient total synthesis of dysiherbaine, a potent and subtype-selective agonist for ionotropic glutamate receptors, has been achieved. An advanced key intermediate in the previous synthesis of neodysiherbaine A and its analogues was selected as the starting point, and cis-oriented amino alcohol functionality on the tetrahydropyran ring was installed by using an intramolecular SN2 cyclization of N-Boc-protected amino alcohol. The amino acid appendage was constructed by catalytic asymmetric hydrogenation of enamide ester.  相似文献   

16.
The asymmetric synthesis of the salicylate enamide macrolide oximidine II is reported. The synthesis involves a highly regio- and stereoselective ring-closing metathesis of a bis-diene substrate to construct the macrocyclic triene core. Copper(I)-mediated amidation of a (Z)-vinyl iodide was employed to attach the enamide side chain.  相似文献   

17.
A convergent synthesis of the central C8-C22 core of the potent macrolide antibiotic rhizopodin is reported. Notable features of the stereocontrolled approach include an asymmetric reverse prenylation of an alcohol using a method of Krische, a thiazolium catalyzed transformation of an epoxyaldehyde as described by Bode, and a late-stage oxazole formation from advanced intermediates. This route demonstrates the applicability of these methodologies in complex natural product synthesis.  相似文献   

18.
A novel and moderate synthesis of 2,5-disubstituted oxazoles and oxazolines involving ruthenium(II) porphyrin-copper chloride catalyzed cyclization was developed. These reactions using readily available benzene carboxylic acids and phenylethenes or phenylacetylenes are performed under mild conditions. The reactions proceed in series, giving rise to the formation of an intermolecular C-N bond and an intramolecular C-O bond, which yield oxazole or oxazoline derivatives simultaneously.  相似文献   

19.
An asymmetric synthesis of a selective endothelin A receptor antagonist 1b is described. Asymmetric conjugate addition of aryllithium derived from 18 to the chiral oxazoline 17 followed by hydrolysis afforded 15 in 96% ee via purification as (S)-(-)-1-phenylethylamine salt. Pd(OAc)(2)/dppf (1,1'-bis(diphenylphosphino)ferrocene) catalyzed carbonylation followed by chemoselective addition of aryllithium derived from 23 which gave ketone 24. Diastereoselective reduction of the ketone with catecholborane followed by concomitant activation of the resulting alcohol and cyclization gave the late intermediate 26. Introduction of amino moiety on the pyridine ring by imidoyl rearrangement followed by deprotection and purification by crystallization furnished the enantiomerically pure target molecule 1b in 8% overall yield from 16.  相似文献   

20.
Regioselective addition of lithiated oxazoline 2a, easily available from 2-(1-chloroethyl)-4,4-dimethyl-2-oxazoline 1a (LDA, THF, -98 degrees C), to alpha,beta-unsaturated Fischer carbene complexes 3 afforded cyclopropylcarbene complexes 4 as sole diastereoisomers. Exposure of carbene complexes 4a-c (M = Cr) to air and sunlight gave cyclopropane carboxylate derivatives 5a-c. A plausible mechanistic explanation is proposed. Moreover, when lithiated oxazoline 2b was generated from 1b in the presence of the carbene complex 3a,b, the oxazolinylcyclopropane carboxylates 6a,b formed as a 1:1 mixture of diastereoisomers. Chiral lithiated oxazoline 2c added regioselectively and diastereoselectively to chromium complexes 3a,b and to tungsten complexes 3d,e, leading, after oxidation of the metal fragment, to esters 7a,b with good diastereoselectivity (dr = 4:1). The reaction of lithiated oxazoline 2d with chromium complex 3b and tungsten complex 3e proceeded less diastereoselectively, furnishing, in both cases, after oxidation, the ester 7c as a 3:2 diastereoselective mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号