首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the vortex state in a two-band superconductor with strong intraband and weak interband electronic scattering rates. Coupled Usadel equations are solved numerically, and the distributions of the pair potentials and local densities of states are calculated for two bands at different values of magnetic fields. The existence of two distinct length scales corresponding to different bands is demonstrated. The results provide qualitative interpretation of recent scanning tunneling microscopy experiments on vortex structure imaging in MgB2.  相似文献   

2.
The superconducting transition temperatureT c of a two band superconductor in the presence of magnetic and nonmagnetic impurities as well as exchange fields is calculated using a new (8 × 8)-matrix formalism for the electron Green's function. In particular we investigate the influence of spin correlations onT c near a magnetic phase transition. It is shown that in the strong interband phonon coupling limit the system behaves essentially as a one band superconductor. In the weak coupling limit we find typical deviations from one band theories.  相似文献   

3.
We study the effect of a single nonmagnetic impurity on the recently discovered (K,Tl)Fe(x)Se(2) superconductors, within both a toy two-band model and a more realistic five-band model. We find that, out of five types of pairing symmetry under consideration, only the d(x(2)-y(2))-wave pairing gives rise to impurity resonance states. The intragap states have energies far away from the Fermi energy. The existence of these intragap states is robust against the presence or absence of interband scattering. However, the interband scattering does tune the relative distribution of local density of states at the resonance states. All these features can readily be accessed by STM experiments, and are proposed as a means to test the pairing symmetry of the new superconductors.  相似文献   

4.
The observation of optical-phonon induced cyclotron resonance harmonics in the valence band of InSb is reported. A photoconductivity technique was applied, using a CO2 laser and magnetic fields up to 15 T. The observed resonances are well described by a corrected Pidgeon-Brown model calculation which is also consistent with experimentally observed magneto-optical intra-conduction and interband transitions.  相似文献   

5.
Optical properties of semiconductors in the simultaneous presence of electric and magnetic fields are reviewed, with particular emphasis on the possibilities of modulation techniques. First, the problem of an electron in crossed and parallel fields is solved in the one-level effective mass approximation (EMA), and the results are used to interpret the experimental interband transitions in Ge, with due account of the degenerate character of the valence band in this material. The limitations of the one-level EMA are discussed, and the two-level model is introduced, which correctly describes the experimentally observed transition from a magnetic type to an electric type of motion in increasing transverse electric field. Possibilities to observe electric field effects in cyclotron resonance transitions are discussed in this approximation. Finally, the three-level model is used to describe properly both orbital and spin properties of conduction electrons. It is demonstrated that in a small-gap semiconductor with large spin-orbit interaction a sufficiently strong transverse electric field destroys the Landau orbital quantization but not the Pauli spin quantization. Possible experimental consequences of this situation are discussed. Influence of finite dimensions of the sample on the character of the electron motion in crossed and parallel fields is examined. A possibility to achieve the semiconductor-semimetal transition in a symmetryinduced zero-gap semiconductor in crossed field configuration is predicted and described, taking into account the Luttinger effects in the magnetic level structure.  相似文献   

6.
The composition dependence of P2, the square of the principal interband matrix element, is investigated. P2 is calculated in a virtual crystal approximation within the empirical pseudopotential method. In all the alloys studied, the variation of P2 with x is found to be nearly linear. The results are compared with experimental values, obtained from a five-band K, K analysis of the conduction electron Landé factor and effective mass data. The agreement is good in Ga1?xInxAs and Ga1?xAlxAs, but not in In1?xGaxSb, which shows a disorder induced deviation.  相似文献   

7.
We present a systematic theoretical study, based on the Kane–Weiler 8×8 k·p model, of the linear Zeeman splitting introduced by the interaction between the angular momentum and the magnetic field which can give a measure of the non-linear Zeeman effect associated with interband coupling and diamagnetic contributions. The conduction and valence bands g-factors are calculated for InSb spherical and semi-spherical quantum dots. The calculations of the g-factors showed an almost linear dependence, for the ground state, on the magnetic field. We have also found that the strong magnetic field dependence as well as the dependence on the dot size of the effective spin splitting can be unambiguously attributed to the strength of the inter-level mixing.  相似文献   

8.
The magnetocaloric effect and the Faraday rotation in a paramagnetic cubic crystal of terbium gallium garnet in strong magnetic fields oriented along different crystallographic directions are calculated theoretically. It is demonstrated that, in strong magnetic fields, the magnetocaloric effect and the Faraday effect are characterized by strong anisotropy, which disappears in weak magnetic fields.  相似文献   

9.
10.
The optical conductivity of graphene, bilayer graphene, and graphite in quantizing magnetic fields is studied. Both dynamical conductivities, longitudinal and Hall’s, are evaluated analytically. The conductivity peaks are explained in terms of electron transitions. Correspondences between the transition frequencies and the magneto-optical features are established using the theoretical results. We show that trigonal warping can be considered within the perturbation theory for strong magnetic fields larger than 1 T. The semiclassical approach is applied for weak fields when the Fermi energy is much larger than the cyclotron frequency. The main optical transitions obey the selection rule with Δn = 1 for the Landau number n, but the Δn = 2 transitions due to the trigonal warping are also possible. The Faraday/Kerr rotation and light transmission/reflection in quantizing magnetic fields are calculated. Parameters of the Slonczewski-Weiss-McClure model are used in the fit taking the previous de Haas-van Alphen measurements into account and correcting some of them in the case of strong magnetic fields.  相似文献   

11.
Boltzmann’s collision integral is extended to the case of helical (Larmor) particle trajectories in a magnetic field of arbitrary strength. The main characteristics of collisions of electrons with positively charged ions in strong magnetic fields, where the Larmor radius of electrons becomes less than the characteristic impact parameter of close collisions in the absence of a magnetic field (Landau’s parameter), are investigated. The differential scattering cross section and the corresponding electron-ion collision integral in strong fields are found. The transport collision frequencies are calculated, and the results are compared with the similar quantities for weaker magnetic fields.  相似文献   

12.
We present the first radiative lifetime measurements and magneto-photoluminescence results of excited states in InGaAs/GaAs semiconductor self-assembled quantum dots. By increasing the photo-excitation intensity, excited state interband transitions up ton= 5 can be observed in the emission spectrum. The dynamics of the interband transitions and the inter-sublevel relaxation in these zero-dimensional energy levels lead to state-filling of the lower-energy states, allowing the quasi-Fermi level to be raised by more than 200 meV due to the combined large inter-sublevel spacing and the low density of states. The decay time of each energy level obtained under various excitation conditions is used to evaluate the inter-sublevel thermalization time. Finally, the emission spectrum of the dots filled with an average of about eight excitons is measured in magnetic fields up to 13 Tesla. The dependences of the spectrum as a function of carrier density and magnetic field are compared to calculations and interpreted in terms of coherent many-exciton states and their destruction by the magnetic field.  相似文献   

13.
We investigate the optical conductivity of iron pnictides in antiferromagnetic state by mean-field calculation in a five-band Hubbard model, focusing on its anisotropic behavior by examining several states calculated with different Hund coupling J, such as the states with a low or high magnetization and with or without a strong orbital ordering. In addition, we investigate the J dependence of the Dirac cone structure, which is crucial for the low energy excitation. In our calculations, a weakly ordered state with no orbital ordering shows the anisotropy of optical conductivity in accord with experiments. We conclude that the low energy part of the optical conductivity is relevant to the Dirac electron structure rather than the orbital ordering.  相似文献   

14.
We study the spectral properties of electron quantum dots (QDs) confined in 2D parabolic harmonic oscillator influenced by external uniform electrical and magnetic fields together with an Aharonov–Bohm (AB) flux field. We use the Nikiforov–Uvarov method in our calculations. Exact solutions for the energy levels and normalized wave functions are obtained for this exactly soluble quantum system. Based on the computed one-particle energetic spectrum and wave functions, the interband optical absorption GaAs spherical shape parabolic QDs is studied theoretically and the total optical absorption coefficient is calculated.  相似文献   

15.
Simulations of an optically pumped intersubband laser in magnetic field up to 60 T are performed within the steady-state rate equations model. The electron-polar optical phonon scattering is calculated using the confined and interface phonon model. A strong oscillatory optical gain vs. magnetic field dependence is found, with two dominant gain peaks occurring at 20 and 40 T, the fields which bring appropriate states into resonance with optical phonons and thus open additional relaxation paths. The peak at 20 T exceeds the value of gain achieved at zero field.  相似文献   

16.
In the framework of effective mass approximation the electronic states in semi-spherical quantum lens under the influence of strong magnetic field are investigated. We have used the adiabatic approximation for the case of strong magnetic field. The eigenfunctions and eigenvalues of this problem are determined. In strong confinement regime interband optical absorption of light is investigated in quantum lens from InAs. The threshold frequencies of absorption are determined. The comparison with the case of film under the influence of strong magnetic field with infinitely high confinement potential is performed.  相似文献   

17.
Intra- and interband magnetooptical experiments were carried out on PbTe/Pb1?xSnxTe superlattices (x=0.135) with layer thicknesses ranging from 13 – 225 nm. For the magnetic field parallel to the [111] growth direction, the Landau levels for the superlattice band structure are calculated within the framework of the envelope function approach for the [111] and the three obliquely oriented valleys. The experimental intra- and interband data agree qualitatively with the results of the model calculation and are consistent with the predictions of a LCAO calculation according to which the electrons or holes are confined in the Pb1?xSnxTe layers.  相似文献   

18.
The expression for the electron wave function for a 3D crystal in a constant magnetic field is obtained in the strong coupling approximation. A 3D Harper-type equation describing the electron spectrum in magnetic 3D subbands is derived. The Fermi surfaces for monovalent noble metals are constructed for various orientations and magnitudes of magnetic fields corresponding to a rational number p/q of the magnetic flux quanta; radical changes in the topology of the Fermi surfaces in a strong magnetic field are observed. As a result, considerable changes in the physical properties of crystals in a strong magnetic field can be expected. In particular, a metal-semiconductor transition occurs for all even values of q, while metallic properties are preserved for odd values of q. The total energy of electrons as a function of the magnetic field is also calculated and shows a minimum for p/q=1/2. The type of thermodynamic oscillations in an ultrastrong magnetic field is discussed. The effects considered by the authors may be observed in fields with a strength of several tens of megagausses.  相似文献   

19.
Magnetoabsorption in far and mid IR ranges in double HgTe/CdHgTe quantum wells with inverted band structure has been studied in high magnetic fields up to 30 T. Numerous intraband and interband transitions have been revealed in the spectra and interpreted within axial 8 × 8 k·p model. Splitting of dominant magnetoabsorption lines resulting from optical transitions from hole-like zero-mode Landau level has been discovered and discussed in terms of a built-in electric field and collective phenomena.  相似文献   

20.
The frequency dependence of the coefficient of interband magnetoabsorption of a weak electromagnetic wave propagating in a constant electric field and in a field of resonant laser radiation at a frequency equal to the cyclotron frequency (infrared magnetic resonance) is calculated. The specific features observed in interband absorption of the electromagnetic wave in a uniform electric field are considered for the case in which the frequency of laser radiation is equal to the confinement frequency in a parabolic quantum well (infrared quantum-well resonance).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号