首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Velocity-temperature correlation in strongly heated channel flow   总被引:2,自引:0,他引:2  
Velocity-temperature correlations in a strongly heated channel flow were investigated experimentally by a LDV and a resistance thermometer. The wall heat flux is varied up to 50,000 W/m2 with reference mean-velocity of 15 m/s, and then, the wall temperature reaches up to 1,000 K. The results show that the ejection fluid motion is intensified by the strong heating near the wall increasing the turbulent heat flux from the wall. The intensification of ejection motion balances the destruction of turbulent heat flux. Then, the overall turbulent heat transfer does not change clearly. Part of this work was supported by Tanikawa Fund, Promotion of Thermal Technology  相似文献   

2.
The three-dimensional velocity fluctuation effects on heat transfer enhancement were experimentally investigated using a wind tunnel system and cylinders placed upstream of the test section in the wind tunnel. The cylinders with different diameters were used as turbulators to generate vortical flow motions with three-dimensional velocity fluctuations. A heated plate, part of the tunnel wall, was placed far downstream of the cylinders such that it was subjected mainly to flows with velocity fluctuations but with negligible steady vortical motions. These studies included three-component velocity measurements to characterize the near-wall and cross-section velocity fields and to obtain the turbulent kinetic energy. The temperatures were measured by thermocouples on the heated plate to obtain the convection heat transfer coefficients and the Nusselt numbers. Results indicate that the heat transfer was enhanced by the velocity fluctuations, which is attributed to the modification of boundary layer velocity profiles without the modification of boundary layer thickness. The resulting normalized Nusselt number was approximately a parabolic function of a dimensionless parameter, the product of Reynolds number and normalized turbulent kinetic energy.  相似文献   

3.
The effect of swirling intensity on the structure and heat transfer of a turbulent gas–droplet flow after a sudden pipe expansion has been numerically simulated. Air is used as the carrier phase, and water, ethanol, and acetone are used as the dispersed phase. The Eulerian approach is applied to simulate the dynamics and heat transfer in the dispersed phase. The gas phase is described by a system of Reynolds-averaged Navier-Stokes (RANS) equations, taking into account the effect of droplets on mean transport and turbulent characteristics in the carrier phase. Gas phase turbulence is predicted using the second-moment closure. A swirling droplet-laden flow is characterized by an increase in the number of small particles on the pipe axis due to their accumulation in the zone of flow recirculation and the action of the turbulent migration (turbophoresis) force. A rapid dispersion of fine droplets over the pipe cross-section is observed without swirling. With an increase in swirling intensity, a significant reduction in the length of the separation region occurs. The swirling of a two-phase flow with liquid droplets leads to an increase in the level of turbulence for all three types of liquid droplets investigated in this work due to their intensive evaporation. It is shown that the addition of droplets leads to a significant increase in heat transfer in comparison with a single-phase swirling flow. The greatest effect of flow swirling on heat transfer intensification in a two-phase gas-droplet flow is obtained for the droplets of ethanol and water and smallest effect is for the acetone droplets.  相似文献   

4.
The present paper describes the heat transfer characteristics of an annular turbulent impinging jet with a confined wall. The local temperature distribution on the impingement surface was measured using a thermosensitive liquid crystal sheet and an image processor. The net heat flux was evaluated by considering the heat conduction in the heated substrate and the thermal radiation between an upper confining insulated wall and an impingement surface. Distributions of the temperature and Nusselt number on the impingement surface were captured in two-dimensional maps. Effects of the diameter ratio of the annular nozzle, the space between nozzle and impingement surface and the Reynolds number on radial distributions of the local Nusselt number were examined. Experimental formulas of the local Nusselt number were obtained in power-law expressions of r/rp for the major and minor flow regions.  相似文献   

5.
A technique using high-speed infrared thermography was applied to measure the spatio-temporal heat transfer to a turbulent water flow in a horizontal circular pipe. The instantaneous distribution of the heat transfer coefficient and its temporal fluctuation was evaluated by solving inverse heat conduction equation of the heated thin-test-surface. As a result, it was demonstrated that the quantitative measurement, not only the time-averaged heat transfer, but also the statistics of the spatio-temporal fluctuation, was possible using this technique. In addition, a unique feature of the spatio-temporal heat transfer was clearly visualized for the turbulent pipe flow, which was dominated by the streaky structure similar to that for the turbulent boundary layer and the turbulent channel flow.  相似文献   

6.
A computational study has been carried out to analyse complex interaction of radiation with turbulent natural convective flow of dry and humid air in open-ended channels. Transient flow simulations are undertaken in the channel with one uniformly heated wall and adiabatic side walls for different values of emissivity of active walls with and without participating medium. To adequately present turbulence and radiation, a computational model included large eddy simulations for the turbulent flow coupled with discrete ordinates method for radiation transfer. Spectral line-based weighted-sum-of-grey-gases for the absorption properties of water vapour has been adopted. Complex three-dimensional vortical structures are identified which directly affect the temperature distribution on the heated wall. Including wall to wall radiation resulted in significant changes in the heat transfer, reaching 14 °C temperature drop at the hot wall with wall emissivity of 0.9. Mixing and cooling rates in this case were increased by up to 25%. Including gas radiation for the humid air with the water vapour molar fraction of 0.02 corresponding to saturated conditions at inlet temperature of 25 °C did not have a significant effect on the mean flow and temperature values comparing with wall to wall radiation. However, turbulent statistics have changed significantly resulting in a delayed transition to turbulence near the active wall of the channel and increased turbulent activity near the cold wall. The model developed in the present study is also applicable in fire management, where the aim is to reduce the damage that occurs when a PV module is exposed to high temperatures.  相似文献   

7.
In this presentation, influences of axial vane swirler on heat transfer augmentation and fluid flow are investigated both experimentally and numerically. The swirl generator is installed at the inlet of the annular duct to generate decaying swirling pipe flow. Three different blade angels of 30°, 45° and 60° were examined. Meanwhile, flow rate was adjusted at Reynolds numbers ranging from 10000 to 30000. Study has been done under uniform heat flux condition and air was used as working fluid. Experimental results confirm that the use of vane swirler leads to a higher heat transfer compared with those obtained from plain tubes. Depending on blade angle, overall Nusselt augmentation is found from 50% to 110% while friction factor increases by the range of 90–500%. Thermal Performance evaluation has been done for test section and test section together with swirler. In both cases, thermal performance increases as vane angle is raised and decreases by growth of Re number. When increasing the blade angle, higher decay rate has been observed for local Nusselt number. In CFD analysis, time-averaged governing equations were solved numerically and RSM model was applied as the turbulence model. Here, the simulation results of axial and tangential velocities, turbulent kinetic energy, wall stresses and swirl intensity are provided. They illustrate the effect of swirling pattern on mean flow and turbulence structure, as well as on improving heat transfer enhancement in the annular duct.  相似文献   

8.
This study experimentally examines the forced convective flow over two sequentially heated blocks mounted on one principal wall of a channel. The experiments, involving mass transfer, were carried out via the naphthalene sublimation technique (NST). By virtue of the analogy between heat and mass transfer, the results can then be converted to determine the heat transfer. In the experiments, the block spacings were set at 2, 4, 6, 8, 12, 16, and 22 and the Reynolds numbers were set at 1300 and 104 which correspond to the laminar and the turbulent convective flow cases, respectively. Results show that the Sherwood number increases or decreases monotonically along the block surfaces in the laminar convection cases; while the hump and sharp increase in the Sherwood number can be found in the turbulent convection cases. This is attributed to the reattachment of the separating bubble and the flow impingement, respectively. Comparison between the experimental and numerical results is made and the effect of the block spacing on heat transfer is discussed.  相似文献   

9.
Heat transfer characteristics of a turbulent, dilute air-solids suspension flow in thermally developing/developed regions were experimentally studied, using a uniformly heated, horizontal 54.5 mm-ID pipe and 43-μm-diameter glass beads. The local heat transfer was measured at 27 locations from the inlet to 120-dia downstream of the heated section over a range of Reynolds numbers 3×104−1.2×105 and solids loading ratio 0–3, and the fully developed profiles of air velocity/temperature and particle mass flux were measured at a location 140-dia downstream of the heated section using specially designed probes, inserted into the suspension flow. The effects of the Reynolds number, solids loading ratio, and azimuthal/longitudinal locations on the heat transfer characteristics and their interactions are discussed through comparison of the present results with the data obtained by other investigators. Received on 14 October 1996  相似文献   

10.
Present study numerically and experimentally investigates the turbulent forced convective flow over a heated block mounted on one principal wall of an adiabatic channel. In the computation, thek-?, low-Reynolds-number, two-equation model was adopted for the turbulence closure. In the experiment, the flow measurement was performed by the laser Doppler velocimetry and the mass transfer measurement was carried out via the naphthalene sublimation technique. By virtue of the analogy between heat and mass transfer, the results could then be converted to predict the heat transfer coefficient. The effects of the Reynolds number and the aspect ratio of the block on heat transfer and fluid flow are thoroughly investigated. Distributions of the velocity and the turbulent kinetic energy are presented to gain an insight into the influence of the fluid flow on the heat transfer from the block. The Nusselt number hump is found on every face of the block, which is attributed to the separating bubble there. It is worth noting that the Nusselt number hump is located near the reattachment point of the separating bubble. In the absence of the separating bubble, the Nusselt number decreases or increases monotonously. Comparisons between numerical and experimental results of the local velocity and the heat transfer coefficient show reasonable agreement.  相似文献   

11.
In the present paper, the heat transfer characteristics in the thermal entrance region of concentric annuli have been analysed for laminar and turbulent internal flow. Axial heat conduction effects in the fluid have been taken into account. The present paper shows an exact analytical solution for the problem of a piecewise uniform wall heat flux. The obtained analytical solution for the extended Graetz problem is as simple and efficient to compute as the related solution of the parabolic problem. The obtained results show the effect of axial heat conduction in the fluid for a semi-infinite heated section as well as for a finite length of the heated section. It is shown, that for a finite length of the heated section, axial heat conduction effects might be important even for higher Peclet number.  相似文献   

12.
Turbulent heat transfer in a ribbed square duct of three different blockage ratios are investigated using direct numerical simulation (DNS). The results of ribbed duct cases are compared with those of a heated smooth duct flow. It is observed that owing to the existence of the ribs and confinement of the duct, organized secondary flows appear as large streamwise-elongated vortices, which intensely interact with the rib elements and four sidewalls and have profound influences on the transport of momentum and thermal energy. This study also shows that the drag and heat transfer coefficients are highly sensitive to the rib height. It is observed that as the rib height increases, the impinging effect of the flow on the windward face of the rib strengthens, leading to enhanced rates of turbulent mixing and heat transfer. The influence of sidewalls and rib height on the turbulence structures associated with temperature fluctuations are analyzed based on multiple tools such as vortex swirling strengths, temporal auto-correlations, spatial two-point cross-correlations, joint probability density functions (JPDF) between the temperature and velocity fluctuations, statistical moments of different orders, and temperature spectra.  相似文献   

13.
Effect of the backward-facing step heights on turbulent mixed convection flow along a vertical flat plate is examined experimentally. The step geometry consists of an adiabatic backward-facing step, an upstream wall and a downstream wall. Both the upstream and downstream walls are heated to a uniform and constant temperature. Laser–Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the time-mean velocity and temperature distributions and their turbulent fluctuations. The experiment was carried out for step heights of 0, 11, and 22 mm, at a free stream air velocity, u, of 0.41 m/s, and a temperature difference, ΔT, of 30 °C between the heated walls and the free stream air. The present results reveal that the turbulence intensity of the streamwise and transverse velocity fluctuations and the intensity of temperature fluctuations downstream of the step increase as the step height increases. Also, it was found that both the reattachment length and the heat transfer rate from the downstream heated wall increase with increasing step height.  相似文献   

14.
Using thermocouples and a particle tracking velocimetry technique, temperature and velocity measurements are conducted to investigate flow and heat transfer characteristics of turbulent natural convection from a vertical heated plate in water with sub-millimeter-bubble injection. Hydrogen-bubbles generated by the electrolysis of water are used as the sub-millimeter-bubbles. In the turbulent region, the heat transfer deterioration occurs for a bubble flow rate Q = 33 mm3/s, while the heat transfer enhancement occurs for Q = 56 mm3/s. Temperature and velocity measurements suggest that the former is caused by a delay of the transition due to the bubble-induced upward flow. On the other hand, the latter is mainly due to two factors: one is the enhancement of the rotation of eddies in the outer layer, and the other is the increase in the gradient of the streamwise liquid velocity at the heated wall. These are caused by bubbles, which are located in the inner layer, rising at high speed.  相似文献   

15.
In this study, two dimensional heat/mass transfer characteristics and flow features were investigated in a rectangular wavy duct with various corrugation angles. The test duct had a width of 7.3 mm and a large aspect ratio of 7.3 to simulate two dimensional characteristics. The corrugation angles used were 100°, 115°, 130°, and 145°. Numerical analysis using the commercial code FLUENT, was used to analyze the flow features. In addition, the oil-lamp black method was used for flow visualization. Local heat/mass transfer coefficients on the corrugated walls were measured using a naphthalene sublimation technique. The Reynolds number, based on the duct hydraulic diameter, was varied from 700 to 5,000. The experimental results and numerical analysis showed interesting and detailed features in the wavy duct. Main flow impinged on upstream of a pressure wall, and the flow greatly enhanced heat/mass transfer. On a suction wall, however, flow separation and reattachment dominantly affected the heat/mass transfer characteristics on the wall. As the corrugation angle decreased (it means the duct has more sharp turn), the region of flow stagnation at the front part of the pressure wall became wider. Also, the position of flow reattachment on the suction wall moved upstream as the corrugation angle decreased. A high heat transfer rate appeared at the front part of the pressure wall due to main-flow impingement, and at the front part of the suction wall due to flow reattachment. The high heat/mass transfer region by the main-flow impingement and the circulation flow induced at a valley between the pressure and suction walls changed with the corrugation angle and the Reynolds number. As the corrugation angle decreased, the flow in the wavy duct changed to transition to turbulent flow earlier.  相似文献   

16.
A turbulent axisymmetric air jet impinging on a square cylinder mounted on a flat plate has been studied experimentally. Turbulence statistics and flow’s topology were investigated. When the surface was heated through uniform heat flux, local heat transfer coefficient was measured. The jet from a long round pipe, 75 pipe diameters (D) in length, at Reynolds number of 23,000, impinged vertically on the square cylinder (3D × 3D × 43D). Measurements were performed using particle image velocimetry, flow visualization using fluorescent dye and infrared thermography. The flow’s topology demonstrated a three-dimensional recirculation after separating from the square cylinder and a presence of foci between the bottom corner and the recirculation’s detachment line. The distribution of heat transfer coefficient was explained by the influence of these flow’s structures and the advection of kinetic energy. On the impingement wall of the square cylinder, a secondary peak in heat transfer coefficient was observed. Its origin can be attributed to very pronounced shear production coupled with the external turbulence coming from the free jet.  相似文献   

17.
This paper first presents the turbulent heat transfer phenomenon of the boundary layer over a 2-dimensional hill using the direct numerical simulation (DNS). DNS results reveal turbulent heat transfer phenomena in the boundary layer over a 2-dimensional hill affected by the flow acceleration and the concave wall at the foreface of a hill, the convex wall at the top of the hill, and the flow deceleration, separation, and reattachment and the concave wall at the back of the hill. The prediction of turbulent heat transfer, the turbulence models of LES and HLR should be assessed in such heat transfer because these models have seldom been evaluated in the complex turbulent heat transfer. Therefore, this paper also presents evaluations of predictions of LES and HLR in the complicated turbulent heat transfer which is the boundary layer with heat transfer over a 2-dimensional hill. Consequently, this paper obviously shows the detailed turbulent heat transfer phenomena of a boundary layer over a 2-dimensional hill via DNS, and the evaluation results of prediction accuracy of LES and HLR for the heat transfer. LES and HLR give good prediction in comparison with DNS results, but the predicted reattachment and separation points are slightly different from DNS.  相似文献   

18.
A laser Doppler velocimeter and a resistance thermometer were used to study velocity and temperature statistics in a strongly heated turbulent two-dimensional channel flow, with the wall temperature up to 700 °C and a Reynolds number of 14,000. Normalized mean velocity and mean temperature profiles were not significantly affected by the wall heating. Turbulent intensities of temperature fluctuation were also insensitive to the heat flux. However, turbulent intensities of velocity fluctuation were suppressed in the region away from the wall, whereas those near the wall were not changed noticeably by the wall heating. This phenomenon was explained by the balance of three parameters: turbulent production, viscous dissipation and intermittency.  相似文献   

19.
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien–Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. Received on 26 April 2000  相似文献   

20.
The paper presents a study of heat transfer between the turbulent airflow and the inner wall surface of an axial diffuser rotating around its longitudinal axis. Heat transfer was assessed through the measurement of a time-dependent temperature field of the diffuser inner wall surface. Measurements of the instantaneous flow velocity components were performed by a laser–Doppler anemometry system, which delivered information on mean velocity components as well as on the turbulence intensity. A significant increase of all three mean velocity components was observed near the rotating diffuser wall in comparison with a non-rotating diffuser. Temperature field measurements were carried out by means of infrared thermography. The experiment showed a significant dependence of the temperature field on the turbulent flowfield induced by diffuser rotation. A strong influence of the flow separation and reattachment on the temperature distribution was observed, while rotation was found to suppress the occurrence of flow separation from the diffuser wall. Properties of the velocity field such as turbulent kinetic energy were directly coupled with the temperature distribution in order to gain the information on how to enhance or reduce heat transfer by changing the integral parameters of the diffuser (e.g. rotation frequency or amount of flow).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号