首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
王佳  李彪 《中国物理 B》2009,18(6):2109-2114
In this paper, the Lie symmetry algebra of the coupled Kadomtsev--Petviashvili (cKP) equation is obtained by the classical Lie group method and this algebra is shown to have a Kac--Moody--Virasoro loop algebra structure. Then the general symmetry groups of the cKP equation is also obtained by the symmetry group direct method which is proposed by Lou et al。 From the general symmetry groups, the Lie symmetry group can be recovered and a group of discrete transformations can be derived simultaneously. Lastly, from a known simple solution of the cKP equation, we can easily obtain two new solutions by the general symmetry groups.  相似文献   

2.
This paper is concerned with the fifth-order modified Korteweg-de Vries(fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion(CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion(CTE) method, the nonlocal symmetry related to the consistent tanh expansion(CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlev′e method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed.  相似文献   

3.
A complete approximate symmetry classification of a class of perturbed nonlinear wave equations is performed using the method originated from Fushchich and Shtelen. Moreover, large classes of approximate invariant solutions of the equations based on the Lie group method are constructed.  相似文献   

4.
董仲周  陈勇  郎艳怀 《中国物理 B》2010,19(9):90205-090205
By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of group invariant solutions is constructed. Then using the associated vector fields of the obtained symmetry, we give the one-, two-, and three-parameter optimal systems of group-invariant solutions. Based on the optimal system, we derive the reductions and some new solutions of the (3+1)-dimensional Zakharov-Kuznetsov equation.  相似文献   

5.
By Lie symmetry method, the Lie point symmetries and its Kac Moody-Virasoro (KMV) symmetry algebra of (2+1)-dimensional dispersive long-wave equation (DLWE) are obtained, and the finite transformation of DLWE is given by symmetry group direct method, which can recover Lie point symmetries. Then KMV symmetry algebra of DLWE with arbitrary order invariant is also obtained. On basis of this algebra the group invariant solutions and similarity reductions are also derived.  相似文献   

6.
We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge group and SU(2) is the internal group of symmetry. We employ the spacetime of four-dimensional Minkowski, endowed with spherical coordinates, and describe the gauge fields by gauge potentials. The corresponding strength field tensors are calculated and the field equations are written. A solution of these equations is obtained for the case that the gauge potentials have a particular form potentials induces a metric of Schwarzschild type on with spherical symmetry. The solution for the gravitational the gravitational gauge group space.  相似文献   

7.
In this paper, the Lie group classification method is performed on the fractional partial differential equation(FPDE), all of the point symmetries of the FPDEs are obtained. Then, the symmetry reductions and exact solutions to the fractional equations are presented, the compatibility of the symmetry analysis for the fractional and integer-order cases is verified. Especially, we reduce the FPDEs to the fractional ordinary differential equations(FODEs) in terms of the Erd′elyi-Kober(E-K) fractional operator method, and extend the power series method for investigating exact solutions to the FPDEs.  相似文献   

8.
To find symmetries,symmetry groups and group invariant solutions are fundamental and significant in nonlinear physics.In this paper,the finite point symmetry group of the combined KP3 and KP4(CKP34) equation is found by means of a direct method.The related point symmetries can be obtained simply by taking the infinitesimal form of the finite point symmetry group.The point symmetries of the CKP34 equation constitute an infinite dimensional KacMoody-Virasoro algebra.The point symmetry invariant so...  相似文献   

9.
Based on the general direct method developed by Lou et al. [J. Phys. A: Math. Gen. 38 (2005) L129], the symmetry group theorem is obtained, from that both the Lie point groups and the non-Lie symmetry groups of the Konopelchenk-Dubrovsky (KD) equation are obtained. From the theorem, some exact solutions of KD equation are derived from a simple travelling wave solution and a multi-soliton solution.  相似文献   

10.
The factor group symmetry analysis(FSA)method and position symmetry analysis(PSA)method are used to analyze the vibrational modes of calcite(CaCO_3)crystal,respectively.With the activated results of infrared and Raman spectra presented,strong points of each method are concluded.The infrared spectra are studied by using dynamics calculations based on density-functional theory(DFT)with the supercell model of calcite crystal.The frequencies of 27 normal modes are achieved,which are consistent with that by the group symmetry analysis very well,and fit with the experimental results better than the lattice dynamical methods.  相似文献   

11.
何国亮  耿献国 《中国物理 B》2012,21(7):70205-070205
Based on the modified Sawada-Kotera equation, we introduce a 3 × 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a generalization of the modified Sawada-Kotera equation, by which a Lax pair of the modified Sawada-Kotera equation is obtained. With the help of the Miura transformation, explicit solutions of the Sawada-Kotera equation, the Kaup-Kupershmidt equation, and the modified Sawada-Kotera equation are given. Moreover, infinite sequences of conserved quantities of the first two nonlinear evolution equations in the hierarchy and the modified Sawada-Kotera equation are constructed with the aid of their Lax pairs.  相似文献   

12.
Starting from a weak Lax pair,the general Lie point symmetry group of the Konopelchenko-Dubrovsky equation is obtained by using the general direct method.And the corresponding Lie algebra structure is proved to be a Kac-Moody-Virasoro type.Furthermore,a new multi-soliton solution for the Konopelchenko-Dubrovsky equation is also given from this symmetry group and a known solution.  相似文献   

13.
We show that there is a quantum Slq(2) group symmetry in Hofstadter problem on square lattice. The cyclic representation of the quantum group is discussed and its application for computing the degeneracy density of the model is shown.  相似文献   

14.
The nonlocal symmetry of the Sawada–Kotera(SK) equation is constructed with the known Lax pair. By introducing suitable and simple auxiliary variables, the nonlocal symmetry is localized and the finite transformation and some new solutions are obtained further. On the other hand, the group invariant solutions of the SK equation are constructed with the classic Lie group method.In particular, by a Galileo transformation some analytical soliton-cnoidal interaction solutions of a asymptotically integrable equation are discussed in graphical ways.  相似文献   

15.
In this paper, the extended symmetry of generalized variable-coeFficient Kadomtsev-Petviashvili (vcKP) equation is investigated by the extended symmetry group method with symbolic computation. Then on the basis of the extended symmetry, we can establish relation among some different kinds of vcKP equations. Thus the exact solutions of these veKP equations can be constructed via the simple veKP equations or constant-coefficient KP equations.  相似文献   

16.
The soliton calculation method put forward by Zabusky and Kruskal has played an important role in the development of soliton theory, however numerous numerical results show that even though the parameters satisfy the linear stability condition, nonlinear instability will also occur. We notice an exception in the numerical calculation of soliton, gain the linear stability condition of the second order Leap-frog scheme constructed by Zabusky and Kruskal, and then draw the perturbed equation with the finite difference method. Also, we solve the symmetry group of the KdV equation with the knowledge of the invariance of Lie symmetry group and then discuss whether the perturbed equation and the conservation law keep the corresponding symmetry. The conservation law of KdV equation satisfies the scaling transformation, while the perturbed equation does not satisfy the Galilean invariance condition and the scaling invariance condition. It is demonstrated that the numerical simulation destroy some physical characteristics of the original KdV equation. The nonlinear instability in the calculation of solitons is related to the breaking of symmetry.  相似文献   

17.
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.  相似文献   

18.
In this paper,the symmetry group of the(2+1)-dimensional Painlevé integrable Burgers(PIB) equations is studied by means of the classical symmetry method.Ignoring the discussion of the infinite-dimensional subalgebra,we construct an optimal system of one-dimensional group invariant solutions.Furthermore,by using the conservation laws of the reduced equations,we obtain nonlocal symmetries and exact solutions of the PIB equations.  相似文献   

19.
高亚军 《中国物理》2006,15(1):66-76
The so-called extended hyperbolic complex (EHC) function method is used to study further the stationary axisymmetric Einstein--Maxwell theory with $p$ Abelian gauge fields (EM-$p$ theory, for short). Two EHC structural Riemann--Hilbert (RH) transformations are constructed and are then shown to give an infinite-dimensional symmetry group of the EM-$p$ theory. This symmetry group is verified to have the structure of semidirect product of Kac--Moody group $\widehat{SU(p+1,1)}$ and Virasoro group. Moreover, the infinitesimal forms of these two RH transformations are calculated and found to give exactly the same infinitesimal transformations as in previous author's paper by a different scheme. This demonstrates that the results obtained in the present paper provide some exponentiations of all the infinitesimal symmetry transformations obtained before.  相似文献   

20.
Whitham–Broer–Kaup(WBK) equations in the shallow water small-amplitude regime is hereby under investigation. Nonlocal symmetry and Bcklund transformation are presented via the truncated Painlevé expansion.This residual symmetry is localised to Lie point symmetry by the properly enlarged system. The finite symmetry transformation of the prolonged system is computed. Based on the CTE method, WBK equations are linearized and new analytic interaction solutions between solitary waves and cnoidal waves are given with the aid of solutions for the linear equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号