首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以丙交酯和乙交酯为原料,PEG-800为引发剂,采用开环聚合方法合成了具有不同单体比例的共聚物。通过IR、1 H-NMR表征了聚合物的结构,应用GPC技术分析了不同单体组成对共聚物分子量及其分布的影响;通过接触角测定的方法考察了不同单体比例组成对其共聚物的亲水性能影响;通过吸水实验,表明随着乙交酯含量的增强,共聚物的吸水性增强。只要引发剂的含量一定,单体丙交酯、乙交酯摩尔比为3∶1的聚合物膜的吸水性能较好。  相似文献   

2.
聚(碳酸酯-co-磷酸酯)的酶促合成及性能   总被引:2,自引:0,他引:2       下载免费PDF全文
冯俊  卓仁禧  贺枫 《中国科学B辑》2002,32(6):486-490
以猪胰脂肪酶或假丝酵母皱褶酶为催化剂, 100℃下通过本体聚合成功地合成了三亚甲基碳酸酯(TMC)和2-乙氧基-2-氧-1,3-二氧磷杂环戊烷(EEP)的无规共聚物(poly(TMC-co-EEP)). 研究了酶浓度, 聚合反应时间以及共聚单体投料比等因素对共聚物分子量和产率的影响. 随着酶(PPL或CL)浓度的增加, 共聚物分子量降低. 同时, 随着EEP投料比的增加, 共聚物的分子量也降低. 共聚物数均分子量最大可达到10200. 随着共聚单体投料摩尔比(EEP/TMC)从0增加到5︰10, 共聚物的玻璃化温度从-28℃降低到-41.7℃. 体外降解实验表明: 共聚物中磷酸酯含量越高, 降解速率越快.  相似文献   

3.
在微波辅助下实现了开环共聚合成可生物降解材料——聚乙交酯-丙交酯(PGLA),其结构经1HNMR,GPC和DSC表征。实验结果表明:微波辐照时间5min时,PGLA的分子量最高{[η]0.8745dL.g-1}。随着辐照时间的延长,PGLA颜色加深,产率提高。PGLA中乙交酯单体实际含量(FG)比初始投料比(fG)高,且随着乙交酯含量的增加,PGLA的Tg降低,Tm升高。  相似文献   

4.
分别在对二氧环己酮均聚物和对二氧环己酮-乙交酯共聚物中加入增塑剂进行纺丝,制得聚对二氧环己酮单丝缝合线(PDS)和对二氧环己酮-乙交酯共聚物单丝缝合线(PDG).用DSC方法研究了增塑剂含量对PDS缝合线热性能的影响和不同热定型条件的PDG缝合线的热性能,测试了热定型温度对PDG缝合线初始强度、模量及柔量的影响,考察了增塑剂含量对两种缝合线的生物降解性能和力学降解性能影响.研究结果表明,PDS缝合线的玻璃化转变温度Tg、结晶温度Tc以及熔融温度Tm均随着增塑剂含量的增加而降低,但其结晶能力增加.随着热定型温度的增加,PDG缝合线的初始打结强度、熔融热均提高,熔融温度Tm基本保持不变.两种缝合线的强度保留率随着增塑剂含量的增加均先增加后减小,而重量保留率随着增塑剂含量增加始终减小.  相似文献   

5.
分别利用化学法和酶促法合成了酮洛芬乙烯酯和葡萄糖丁二酸乙烯酯(6-O-乙烯丁二酰-D-葡萄糖)2种聚合单体,通过2种单体的自由基聚合反应制备了具有较高分子量的酮洛芬葡萄糖共聚物前药,通过IR、NMR对聚合物的结构进行了表征,用GPC方法测定共聚物分子量。 研究了聚合单体投料比例对共聚物分子量和载药量的影响。 结果表明,随着药物乙烯酯在投料中比例的增加,聚合物前药的分子量逐渐下降,聚合物中酮洛芬的载药量逐渐增加。 酮洛芬含糖聚合物前药的体外释放研究表明,酮洛芬的释放时间大大延长,达到了缓释的目的,释药速率随着聚合物前药中葡萄糖含量增加而加快。 聚合物前药的释放动力学模拟结果显示,共聚物释药更符合一级动力学释放模型。  相似文献   

6.
乙交酯(GA)和己内酯在辛酸亚锡催化下经聚合反应合成了乙交酯-己内酯无规共聚物(Px)。体外加速降解研究结果表明,Px的降解过程大致分为三个阶段:0 h~12 h,12 h~36 h和36 h~72 h。Px中GA含量越高,其变化越接近于聚乙醇酸。  相似文献   

7.
研究了聚苯乙烯大单体与乙酸乙烯酯的溶液聚合,结果表明,接枝效率随引发剂用量、聚合温度及小单体与大单体的投料比的增加而增加,随大单体的分子量增加而减少,而随单体浓度的变化呈现一最大值。共聚过程中大单体的转化率开始较小单体的增加快,后期变慢。用萃取法纯化的接枝共聚物经GPC、IR、~1H-NMR及PGC等表征,并算得平均接枝数为4—7。透射电镜表明接枝共聚物中存在微观相分离。  相似文献   

8.
丙烯腈与衣康酸在DMSO/H_2O中的聚合及聚合物性能表征   总被引:5,自引:0,他引:5  
采用丙烯腈 (AN)与衣康酸 (IA)为共聚单体 ,以偶氮二异丁腈为引发剂在混合介质二甲基亚砜 水(DMSO H2 O)中自由基沉淀共聚合 ,合成了高分子量的聚丙烯腈 .通过正交设计方法研究了聚合反应条件 ,如反应温度、单体浓度、混合介质DMSO H2 O配比等对聚合反应的转化率的影响 ,还重点探讨了混合介质DMSO H2 O配比对转化率和粘均分子量的影响 .采用DSC ,TG ,IR等手段研究了PAN均聚物及 (PAN co IA)的结构与性能 .研究结果表明 ,增加反应温度 ,降低单体浓度 ,降低喂料AN IA配比中IA的含量 ,均有利于提高聚合反应的转化率 .AN与IA共聚反应的转化率随着反应介质中DMSO含量的增加而降低 ,同时聚合物的粘均分子量也降低 .对于喂料AN IA配比中IA含量相同的P(AN co IA)共聚物 ,高分子量P(AN co IA)共聚物比常规低分子量的放热峰起始温度低 ,放热峰宽  相似文献   

9.
采用DCS法测定了新嵌段共聚物聚己内酯-聚乙二醇嵌段共聚物的结晶性,研究了共聚物的结晶性同组成及降解性的关系。结果表明随着共聚物中PEG组分的含量和分子量增加,共聚物的结晶性下降,亲水性提高,降解速度加快。  相似文献   

10.
乙酰化淀粉/DL-丙交酯接枝共聚物的合成及降解性能研究   总被引:7,自引:0,他引:7  
用醋酸乙烯酯和玉米淀粉反应制备出了不同取代度乙酰化淀粉,再用乙酰化淀粉同DL-丙交酯接枝共聚合成乙酰化淀粉/DL-丙交酯接枝共聚物。研究了原料配比,淀粉取代度对接枝反应单体转化率(C%),接枝率(G%)接枝效率(GE%)和接枝支链数均分子量(Mn)的影响,结果表明在给定的试验条件下接枝共聚反应的C%,G%,GE%和Mn可分别达到40%,225%,80%和1.4万。接枝共聚物在磷酸缓冲溶液和户外土壤掩埋降解实验表明,在160天内样品失重率分别为71%和60%,表明合成的乙酰化淀粉/DL-丙交酯接枝共聚物具有很好的降解性能。  相似文献   

11.
以对二氧环己酮均聚物和对二氧环己酮 乙交酯共聚物为原料 ,加入无毒性增塑剂 (邻苯二甲酸酯 )进行纺丝 ,得到聚对二氧环己酮单丝缝合线 (PDS)和对二氧环己酮 乙交酯共聚物单丝缝合线 (PDG) .用DSC、WAXD、声速法对缝合线的结构与性能进行了测试 ,研究了增塑剂含量对缝合线的物理力学性能的影响 .研究结果表明 ,增塑剂使样品的玻璃化转变温度Tg 降低 ,聚合物结晶完善程度降低 .一定含量的增塑剂能够赋予缝合线较好的柔性 ,并使缝合线的初始强度有不同程度的提高  相似文献   

12.
Low and medium molecular weight copolymers constituted by glycolide and p‐dioxanone units have been synthesized by a ring‐opening polymerization. The p‐dioxanone monomer was obtained from (2‐hydroxyethoxy)acetate or by thermal depolymerization of poly(p‐dioxanone). 1H and 13C NMR spectra were highly sensitive to the chemical sequences, which were effectively assigned by considering the data from samples with different compositions, and the acquisition of heteronuclear 1H and 13C NMR‐correlated spectra. End groups were also identified, allowing methylene protons of sequences involving up to two glycolide units to be distinguished. These data seem basic to analyze degradation products or the influence of thermal treatments in chain microstructure. Glycolide/p‐dioxanone copolymers are an interesting system because changes on chemical sequences can easily occur due to a depolymerization reaction that eliminates p‐dioxanone residues. Furthermore, depending on the polymerization conditions, the occurrence of transesterification reactions may be highly significant. These reactions have a great impact in properties such as the melting temperature and can be easily quantified by NMR spectroscopy because of the occurrence of a new chemical sequence. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

13.
聚对二氧环己酮-乙交酯缝合线体外降解研究   总被引:6,自引:0,他引:6  
用DSC和X ray衍射法对聚对二氧环己酮 乙交酯 (PDG)缝合线的初期体外降解过程进行了研究 ,并使用纤维摄影仪对纤维在降解过程中的表面形态变化进行了观察 .研究结果表明 ,在本工艺条件下得到的PDG缝合线在体外降解过程中分为三个阶段降解 ,即无定形区降解、原纤间非晶区降解和晶区水解 .在体外降解过程中 ,PDS缝合线以横向断裂为主 ,而PDG则通过表面积的大块脱落来完成降解过程  相似文献   

14.
Changes in the lamellar morphology that occurred during the quiescent isothermal crystallization of absorbable poly(p‐dioxanone) (PDS) and PDS/poly(glycolide) block copolymer were studied by synchrotron small‐angle X‐ray scattering. Important morphological parameters such as the lamellar long period, the thicknesses of the crystal and amorphous phases, and the scattering invariant were estimated as a function of time, and trends observed over a wide range of experimental conditions are discussed. Thicker but more perfect lamellae were detected at higher crystallization temperatures. The breadth of the normalized semilog Lorentz‐corrected intensity peak systematically decreased with increasing temperature. In addition, the values of the crystallization half‐time and the Avrami exponent (n = 2.5), determined from the real‐time changes in the lamellar development, showed superb agreement with the bulk crystallinity data generated from other experimental techniques, such as calorimetry and dielectric relaxation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 153–167, 2001  相似文献   

15.
A series of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) copolymers were prepared with varying feed rations by using two step polymerization reactions. Poly(trimethylenecarbonate)(ε‐caprolactone) random copolymer was synthesized with stannous‐2‐ethylhexanoate and followed by adding p‐dioxanone monomer as the other block. The ring opening polymerization was carried out at high temperature and long reaction time to get high molecular weight polymers. The monofilament fibers were obtained using conventional melting spun methods. The copolymers were identified by 1H and 13C NMR spectroscopy and gel permeation chromatography (GPC). The physicochemical properties, such as viscosity, molecular weight, melting point, glass transition temperature, and crystallinity, were studied. The hydrolytic degradation of copolymers was studied in a phosphate buffer solution, pH = 7.2, 37 °C, and a biological absorbable test was performed in rats. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2790–2799, 2005  相似文献   

16.
Hot‐stage optical microscopy was used to study the crystal morphology, nucleation, and spherulitic growth rates of poly(p‐dioxanone) (PDS) homopolymer and an 89/11 PDS/glycolide segmented block copolymer. A wide range of crystallization conditions were experimentally accessible, allowing the inspection of various morphological features and accurate estimations of characteristic growth parameters, including radial growth and nucleation rates. Although the regime analysis of the crystallization kinetics indicated no breaks in the growth rate curve, the isothermal data were in excellent agreement with the Hoffman–Lauritzen theory. Spherulitic growth rates obtained from optical measurements are compared with values of the half‐time of crystallization determined earlier by differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 3073–3089, 2001  相似文献   

17.
In this study, three kinds of L ‐lactide‐based copolymers, poly(lactide‐co‐glycolide) (PLGA), poly(lactide‐co‐p‐dioxanone) (PLDON) and poly(lactide‐co‐caprolactone) (PLC), were synthesized by the copolymerization of L ‐lactide (L) with glycolide (G), or p‐dioxanone (DON) or ε‐caprolactone (CL), respectively. The copolymers were easily soluble in common organic solvents. The compositions of the copolymers were determined by 1H‐NMR. Thermal/mechanical and shape‐memory properties of the copolymers with different comonomers were compared. Moreover, the effect of the chain flexibility of the comonomers on thermal/mechanical and shape‐memory properties of the copolymers were investigated. The copolymers with appropriate lactyl content showed good shape‐memory properties where both the shape fixity rate (Rf)and the shape recovery rate (Rr) could exceed 95%. It was found that the comonomers with different flexible molecular chain have different effects on their thermal/mechanical and shape‐memory properties. Among them, PLGA has the highest mechanical strength and recovery rate while PLC copolymer has high recovery rate when the lactyl content exceeded 85% and the lowest transition temperature (Ttrans). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Intestinal resection and anastomosis are performed in over a million people with various bowel diseases annually. Excessive fibrosis and anastomotic site leakage are the main complications of anastomosis surgery, despite great improvements in operative technique and equipment in recent years. In this study, cRGD modified poly(p‐dioxanone‐co‐l ‐Phe) (PDPA) membranes are designed and applied in intestinal anastomosis to simultaneously solve the two aforementioned complications. cRGD is modified onto PDPA membranes through both physical absorption and π–π accumulation between d ‐Phe of cRGD and l ‐Phe of PDPA. Although cRGD modification enhanced the biocompatibility of PDPA membranes, cRGD modified PDPA membrane suppresses fibroblast proliferation both in vitro and in vivo as a result of degradation and subsequent release of fibroblast suppressive l ‐Phe from PDPA. Meanwhile, platelets are entrapped by cRGD modified PDPA membranes through the specific binding of cRGD and platelet GPIIbIIIa. cRGD modified PDPA membranes are applied in rat intestinal anastomosis, and both adhesion and stenosis are successfully prevented at anastomotic sites. At the same time, bursting pressure, which represents healing intensity at anastomotic sites, is promoted. The gathering and activation of platelets on PDPA membranes induce secretion of autologous PDGF and VEGF to facilitate angiogenesis and subsequent healing of anastomotic sites.  相似文献   

19.
The soluble products of the hydrolytic degradation of photochemically cross-linked poly-(d,l-lactide-co-glycolide 50/50)-di-acrylate film were analysed at different stages to obtain insight into the complex (bio)degradation processes. Liquid chromatography-mass spectrometry analyses have been used to identify and quantify the various oligomeric and polymeric degradation products from the soluble fraction. The products were analysed directly after release and also after complete hydrolysis of the soluble fraction. The study shows a rapid release of residual photo-initiator followed by a gradual release of lactide/di-ethyleneglycol/glycolide oligomers with varying composition and chain length. The final stage of the sigmoidal weight loss profile reflects the release of polyacrylate chains with lactide/glycolide side chains. The molecular weights of the polyacrylate chains released increase with degradation time, which indicates that the release of these polyacrylate chains is determined by the number and type of ester-groups that must be degraded hydrolytically to dissolve these chains. The analysis of the soluble degradation products provides detailed insights in the chemical changes at the different stages of degradation; extraction, network attack, network penetration, bulk degradation, and finally release of persistent network fragments. Chromatographic and mass spectrometric techniques prove to be powerful tools to enhance the understanding of the hydrolytic degradation of chemically cross-linked acrylates.  相似文献   

20.
Starch and poly(p‐dioxanone) (PPDO) are the natural and synthetic biodegradable and biocompatible polymers, respectively. Their copolymers can find extensive applications in biomedical materials. However, it is very difficult to synthesize starch‐graft‐PPDO copolymers in common organic solvents with very good solubility. In this article, well‐defined polysaccharides‐graft‐poly(p‐dioxanone) (SAn‐PPDO) copolymers were successfully synthesized via the ring‐opening polymerization of p‐dioxanone (PDO) with an acetylated starch (SA) initiator and a Sn(Oct)2 catalyst in bulk. The copolymers were characterized via Fourier transform infrared spectroscopy, 1H NMR, gel permeation chromatography, thermogravimetric analysis (TG), differential scanning calorimetry, and wide angle x‐ray diffraction. The in vitro degradation results showed that the introduction of SA segments into the backbone chains of the copolymers led to an enhancement of the degradation rate, and the degradation rate of SAn‐PPDO increased with the increase of SA wt %. Microspheres with an average volume diameter of 20 μm, which will have potential applications in controlled release of drugs, were successfully prepared by using these new copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5344–5353, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号