首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a computational depth conversion method based on the lenslet model to display the orthoscopic 3D images in 3D integral imaging display. The proposed method permits the synthesis of elemental images for the orthoscopic 3D images at any arbitrary position without any restrictions and requires no additional procedure during the depth conversion process. Due to the lenslet model involved in the depth conversion procedure, the proposed method can broaden the flexibility of 3D image reconstruction in the integral imaging display system. We carry out the preliminary experiments to prove the feasibility of the proposed method. The experimental results reveal that the proposed method is an effective depth conversion method that allows the reconstruction of the orthoscopic 3D images at any arbitrary position.  相似文献   

2.
In this paper, we proposed a novel approach for reconstruction of the magnified, real and orthoscopic three-dimensional (3-D) object images by using the moving-direct-pixel-mapping (MDPM) method in the MALT(moving-array-lenslet-technique)-based scalable integral-imaging system. In the proposed system, multiple sets of elemental image arrays (EIAs) are captured with the MALT, and these picked-up EIAs are computationally transformed into the depth-converted ones by using the proposed MDPM method. Then, these depth-converted EIAs are combined and interlaced together to form an enlarged EIA, from which a magnified, real and orthoscopic 3-D object images can be optically displayed without any degradation of resolution. Good experimental results finally confirmed the feasibility of the proposed method.  相似文献   

3.
基于立体像素匹配的图像重构技术研究   总被引:1,自引:0,他引:1  
朴燕 《光子学报》2008,37(12):2560-2563
为了解决目前全景成像技术中分辨率低的问题,提出了一种新的基于3D场景立体像素光线映射的全景图像计算机重构技术.在全景成像技术中,3D场景的每个立体像素点经全景成像系统的编码系统分别映射在一定区域的多个体元素图像的不同像素点上.在计算机重构全景图像时,根据逆光学路径原理,提出了从立体像素映射到的体元素图像区域中提取对应立体像素的多个2D像素点来重构全景图像,使重构的全景图像最大分辨率可达到传统成像方法图像分辨率的N倍(N为映射区域面积).提出的立体像素的匹配技术大大提高了重构的计算机全景图像分辨率.  相似文献   

4.
Shin D  Javidi B 《Optics letters》2012,37(11):2130-2132
In this Letter, we propose an improved three-dimensional (3D) image reconstruction method for integral imaging. We use subpixel sensing of the optical rays of the 3D scene projected onto the image sensor. When reconstructing the 3D image, we use a calculated minimum subpixel distance for each sensor pixel instead of the average pixel value of integrated pixels from elemental images. The minimum subpixel distance is defined by measuring the distance between the center of the sensor pixel and the physical position of the imaging lens point spread function onto the sensor, which is projected from each reconstruction point for all elemental images. To show the usefulness of the proposed method, preliminary 3D imaging experiments are presented. Experimental results reveal that the proposed method may improve 3D imaging visualization because of the superior sensing and reconstruction of optical ray direction and intensity information for 3D objects.  相似文献   

5.
A novel integral imaging-based three-dimensional (3D) digital watermarking scheme is presented. In the proposed method, an elemental image array (EIA) obtained by recording the rays coming from a 3D object through a pinhole array in the integral imaging system is employed as a new 3D watermark. The EIA is composed of a number of small elemental images having their own perspectives of a 3D object, and from this recorded EIA various depth-dependent 3D object images can be reconstructed by using the computational integral imaging reconstruction (CIIR) technique. This 3D property of the EIA watermark can make a robust reconstruction of the watermark image available even though there are some data losses in the embedded watermark by attacks. To show the robustness of the proposed scheme against attacks, some experiments are carried out and the results are discussed.  相似文献   

6.
In this paper, we propose an occlusion removal technique for improved recognition of 3D objects that are partially occluded in computational integral imaging (CII). In the reconstruction process of a 3D object which is partially occluded by other objects, occlusion degrades the resolution of reconstructed 3D images and thus this affects negatively the recognition of a 3D object in CII. To overcome this problem, we introduce a method to eliminate occluding objects in elemental image array (EIA) and the proposed method is applied to 3D object recognition by use of CII. To our best knowledge, this is the first time to remove occlusion in CII. In our method, we apply the elemental image to sub-image (ES) transform to EIA obtained by a pickup process and those sub-images are employed for occlusion removal. After the transformation, we correlate those sub-images with a reference sub-image to locate occluding objects and then we eliminate the objects. The inverse ES transform provides a modified EIA. Actually, the modified EIA is considered to be an EIA without the object that occludes the object to be reconstructed. This can provide a substantial gain in terms of the image quality of 3D objects and in terms of recognition performance. To verify the usefulness of the proposed technique, some experimental results are carried out and the results are presented.  相似文献   

7.
We propose a method of generating orthoscopic elemental image array from a sparse camera array. A parallax image array obtained by a sparse camera array provides different perspectives of a real threedimensional (3D) scene, and has all the information the elemental image array needs. In-depth analysis of the generation method and the relationships between the sparse camera array and the elemental image array are presented. The experimental results demonstrate the correctness of the proposed method.  相似文献   

8.
A novel three-dimensional (3D) image encryption approach by using the computer-generated integral imaging and cellular automata transform (CAT) is proposed, in which, the two-dimensional (2D) elemental image array (EIA) digitally recorded by light rays coming from the 3D image is mapped inversely through the virtual pinhole array according to the ray-tracing theory. Next, the encrypted image is generated by using the 2D CAT scrambling transform for the 2D EIA. The reconstructed process is carried out by using the modified computational integral-imaging reconstruction (CIIR) technique; the depth-dependent plane images are reconstructed on the output plane. The reconstructed 3D image quality of the proposed scheme can be greatly improved, because the proposed encryption scheme carries out in a computer which can avoid the light diffraction caused by optical device CIIR, and solves blur problem caused by CIIR by using the pixel-averaging algorithm. Furthermore, the CAT-based encryption algorithm is an error-free encryption method; CAT as an orthogonal transformation offers considerable simplicity in the calculation of the transform coefficient, that is, it can improve the quality of the reconstructed image by reducing energy loss compared with the traditional complicated transform process. To show the effectiveness of the proposed scheme, we perform computational experiments. Experimental results show that the proposed scheme outperforms conventional encryption methods.  相似文献   

9.
Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.  相似文献   

10.
Hoon Yoo 《Optics Communications》2011,284(21):5110-5114
In this paper, a three-dimensional (3D) image correlator using a fast computational integral imaging reconstruction (CIIR) method based on a pixel-to-pixel mapping is proposed. In order to implement the fast CIIR method, we replace the magnification process in the conventional CIIR by a pixel-to-pixel mapping. The proposed fast CIIR method reconstructs two sorts of plane images; a plane image whose quality is sufficient, and a dot pattern plane image insufficient to view. This property is very useful to enhance the performance of a CIIR-based image correlator. Thus, we apply the fast CIIR method to a CIIR-based image correlator. To show the feasibility of the proposed method, some preliminary experiments on both pattern correlation and computational cost are carried out, and the results are presented. Our experimental results indicate that the proposed image correlator is superior to the previous method in terms of both correlation performance and complexity.  相似文献   

11.
We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays(PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array(EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method.To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.  相似文献   

12.
In this paper, we propose a system combining the pickup process using an active sensor and the display process using depth-priority integral imaging (DPII) system to display true three-dimensional (3D) objects within large depth through real and virtual image fields. The active sensor provides depth map and color images of 3D objects. Using captured depth map and original color images, elemental images are computationally synthesized and displayed optically in DPII system. Proposed system provides scaling of 3D scenes for true 3D object. To show the usefulness of proposed system, we carry out the experiment for true 3D objects of three character patterns and present the experimental results.  相似文献   

13.
刘聪  李言俊  张科 《光子学报》2014,39(12):2257-2262
在二维魏格纳分布的框架内,针对魏格纳变换的交叉项问题和计算量大的问题,提出了合成孔径雷达图像局部伪魏格纳变换的目标和目标阴影的分割方法.首先,将合成孔径雷达图像进行二维伪魏格纳变换,得到各像素点的二维能量谱图|然后提取各像素点的二维能量谱图对应位置值形成多个不同频段的与原图像同大小的能量谱图|最后,对不同频段的能量谱图采用不同的处理方法后,将各能量谱图相加处理后形成区域标识图像,最终得到原图像的目标和目标阴影分割图像.本文利用该方法对MSTAR切片图像进行了分割试验,并对分割图像与频谱最大值距离或方位分割算法和基于双参量CFAR与隐马尔科夫联合分割算法进行了分割图像对比度对比.实验结果表明,采用本文算法的合成孔径雷达分割图像,对比度明显提高,且保留了目标图像细节.  相似文献   

14.
In this paper, we propose a novel computational integral imaging reconstruction (CIIR) method to improve the visual quality of the reconstructed images using a pixel-to-pixel mapping and an interpolation technique. Since an elemental image is magnified inversely through the corresponding pinhole and mapped on the reconstruction output plane based on pinhole-array model in the conventional CIIR method, the visual quality of reconstructed output image (ROI) degrades due to the interference problem between adjacent pixels during the superposition of the magnified elemental images. To avoid this problem, the proposed CIIR method generates dot-pattern ROIs using a pixel-to-pixel mapping and substitutes interpolated values for the empty pixels within the dot-pattern ROIs using an interpolation technique. The interpolated ROIs provides a much improved visual quality compared with the conventional method because of the exact regeneration of pixel positions sampled in the pickup process without interference between pixels. Moreover, it can enable us to reduce a computational cost by eliminating the magnification process used in the conventional CIIR. To confirm the feasibility of the proposed system, some experiments are carried out and the results are presented.  相似文献   

15.
This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.  相似文献   

16.
A new watermarking algorithm based on genetic algorithm (GA) in the transform domain is proposed. Unlike the existing computer-generated integral imaging based watermarking methods, the proposed method utilizes GA searching to the optimized transform domain to serve as a trade-off for watermark embedding. In this paper, 3D scene to be captured by using a virtual pinhole array and be computationally recorded as an elemental image array (EIA), watermarking with GA optimization and computer-generated holography is implemented. In the proposed GA optimization process, we utilize the fitness function to improve the visual quality of watermarked images and the robustness. Simulation results show that the proposed algorithm yields a holographic watermark that is imperceptibility to human eyes and robust to standard watermarking attacks. A comparison of the proposed watermarking method to the existing similar watermarking methods demonstrated that the proposed method generally outperforms completing methods in terms of imperceptibility and robustness.  相似文献   

17.
In this paper, we propose a method that controls the depth of the three-dimensional (3D) object existing over the depth-of-focus in integral imaging. The depth control method is performed only in a computer by synthesizing the intermediate sub-images between original sub-images obtained by transforming the captured elemental images. In the reconstruction process, we can obtain reconstructed 3D images with the better image quality within depth-of-focus than that reconstructed over the depth-of-focus. To demonstrate the feasibility of our method, optical and computational experiments are carried out and its results are presented.  相似文献   

18.
In this paper, we propose an image encryption technique to simultaneously encrypt double or multiple images into one encrypted image using computational integral imaging (CII) and fractional Fourier transform (FrFT). In the encryption, each of the input plane images are located at different positions along a pickup plane, and simultaneously recorded in the form of an elemental image array (EIA) through a lenslet array. The recorded EIA to be encrypted is multiplied by FrFT with two different fractional orders. In order to mitigate the drawbacks of occlusion noise in computational integral imaging reconstruction (CIIR), the plane images can be reconstructed using a modified CIIR technique. To further improve the solution of the reconstructed plane images, a block matching algorithm is also introduced. Numerical simulation results verify the feasibility and effectiveness of the proposed method.  相似文献   

19.
Because of its high measuring speed, moderate accuracy, low cost and robustness in the industrial field, 3D laser scanning has been widely used in a variety of applications. However, the measurement of a 3D profile of a high dynamic range (HDR) brightness surface such as a partially highlighted object or a partial specular reflection remains one of the most challenging problems. This difficulty has limited the adoption of such scanner systems. In this paper, an optical imaging system based on a high-resolution liquid crystal on silicon (LCoS) device and an image sensor (CCD or CMOS) was built to adjust the image's brightness pixel by pixel as required. The radiance value of the image captured by the image sensor is constrained to lie within the dynamic range of the sensor after an adaptive algorithm of pixel mapping between the LCoS mask plane and image plane through the HDR imaging system is added. Thus, an HDR image was reconstructed by the LCoS mask and the CCD image on this system. The significant difference between the proposed system and a traditional 3D laser scanner system is that the HDR image was used to calibrate and calculate the 3D profile coordinate. Experimental results show that HDR imaging can enhance 3D laser scanner system environmental adaptability and improve the accuracy of 3D profile measurement.  相似文献   

20.
无狭缝一步彩虹全息的新方法   总被引:5,自引:1,他引:4  
关承祥 《光学学报》1990,10(8):42-746
本文提出一种新的三维漫射物体的一步彩虹全息方法.该法是在曝光过程中将被摄物体与成像透镜同时沿垂直光轴方向移动,并通过场镜使合成狭缝直接成像在场镜后焦面上,可得到较大观察范围的无畸变彩虹全息像.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号