首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a study of the interactions of proteins with monolayers of phospholipids (D/L-alpha-dipalmitoyl phosphatidylcholine and L-alpha-dilauroyl phosphatidylcholine) spontaneously assembled at an interface between an aqueous phase and a 20-microm-thick film of a nematic liquid crystal (4'-pentyl-4-cyanobiphenyl). Because the orientation of the liquid crystal is coupled to the organization of the lipids, specific interactions between phospholipase A2 and the lipids (binding and/or hydrolysis) that lead to reorganization of the lipids are optically reported (using polarized light) as dynamic orientational transitions in the liquid crystal. In contrast, nonspecific interactions between proteins such as albumin, lysozyme, and cytochrome-c and the lipid-laden interface of the liquid crystal are not reported as orientational transitions in the liquid crystals. Concurrent epifluorescence and polarized light imaging of labeled lipids and proteins at the aqueous-liquid crystal interface demonstrate that spatially patterned orientations of the liquid crystals observed during specific binding of phospholipase A2 to the interface, as well as during the subsequent hydrolysis of lipids by phospholipase A2, reflect the lateral organization (micrometer-sized domains) of the proteins and lipids, respectively, at the aqueous-liquid crystal interface.  相似文献   

2.
We report a study of the orientations of nematic liquid crystals (LCs) in contact with peptide-modified, oligoethylene glycol-containing, self-assembled monolayers (SAMs). The SAMs were formed on gold films that were prepared by physical vapor deposition at an oblique angle of incidence. Two peptides were investigated: the optimized substrate for the Src protein kinase (IYGEFKKKC) and the synthetic equivalent of that peptide after kinase modification (IpYGEFKKKC). Polarization modulation-infrared reflectance absorbance spectroscopy (PM-IRRAS) was used to characterize the relative areal densities and orientations of these peptides at the interface. We conclude that the presence/absence of a phosphate group can influence the maximum packing density of immobilized peptide. We evaluated the orientations of the nematic liquid crystal 5CB in contact with these peptide-modified surfaces by using polarized microscopy. The time required for the nematic phase of 5CB to exhibit long-range orientational ordering (uniform alignment) was found to increase with increasing areal densities of immobilized peptide. We also found that the specific binding event between anti-phosphotyrosine IgG and the surface-immobilized phosphopeptide leads to an increase in the time required for the liquid crystal to achieve uniform anchoring (exceeding the experimentally accessible time scales). These results, when combined, suggest that the areal density and size of biomolecules at an interface can influence the time required for liquid crystals in contact with nanostructured surfaces to exhibit long-range orientational order. Finally, we illustrate the potential utility of this system by demonstrating that liquid crystals can be used to amplify and report protein binding events occurring on a spatially resolved peptide array.  相似文献   

3.
Oligonucleotide-peptide conjugate was synthesized by coupling of RNase S-peptide to a 24-mer single-stranded DNA (ssDNA) oligonucleotide to be immobilized on its complementary ssDNA oligonucleotide-fixed gold surface of sensor chip or electrode. Immobilization of on the ssDNA-fixed gold surface through DNA duplex formation was confirmed by quartz crystal microbalance (QCM) and electrochemical measurements. After treating with a synthetic acridinyl poly(ethylene glycol) (APEG), specific interaction of S-protein with the S-peptide immobilized on the gold surface was demonstrated by QCM without nonspecific adsorption of unrelated proteins such as BSA and RNase A at the surfaces. This result suggested that the acridine parts of APEG could bind to the DNA duplex on the gold surface and the poly(ethylene glycol) parts were fastened on the surface to resist the adsorption of proteins. Thus, the combination of oligonucleotide-peptide conjugate, ssDNA-fixed chip and APEG with effective masking property provides a new tool for the analysis of specific peptide-protein interactions without disturbance by other unrelated proteins.  相似文献   

4.
Ribonuclease A (RNase A) is immobilized on silver surfaces in oriented and random form via self-assembled monolayers (SAMs) of alkanethiols. The immobilization process is characterized step-by-step using chemically selective near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the C, N, and S K-edges. Causes of imperfect immobilization are pinpointed, such as oxidation and partial desorption of the alkanethiol SAMs and incomplete coverage. The orientation of the protein layer manifests itself in an 18% polarization dependence of the NEXAFS signal from the N 1s to pi* transition of the peptide bond, which is not seen for a random orientation. The S 1s to C-S sigma* transition exhibits an even larger polarization dependence of 41%, which is reduced to 5% for a random orientation. A quantitative model is developed that explains the sign and magnitude of the polarization dependence at both edges. The results demonstrate that NEXAFS is able to characterize surface reactions during the immobilization of proteins and to provide insight into their orientations on surfaces.  相似文献   

5.
We report measurements of the orientations and azimuthal anchoring energies of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) on polycrystalline gold films that are deposited from a vapor at an oblique angle of incidence and subsequently decorated with organized monolayers of oligomers of ethylene glycol. Whereas the gold films covered with monolayers presenting tetra(ethylene glycol) (EG4) lead to orientations of 5CB that are perpendicular to the plane of incidence of the gold, monolayers presenting tri(ethylene glycol) (EG3) direct 5CB to orient parallel to the plane of incidence of the gold during deposition of the gold film. We also measure the azimuthal anchoring energy of the 5CB to be smaller on the surfaces presenting EG3 (3.2 +/- 0.8 microJ/m2) as compared to EG4 (5.5 +/- 0.9 microJ/m2). These measurements, when combined with other results presented in this paper, are consistent with a physical model in which the orientation and anchoring energies of LCs on these surfaces are influenced by both (i) short-range interactions of 5CB with organized oligomers of ethylene glycol at these surfaces and (ii) long-range interactions of 5CB with the nanometer-scale topography of the obliquely deposited films. For surfaces presenting EG3, these short- and long-range interactions oppose each other, leading to small net values of anchoring energies that we predict are dependent on the level of order in the EG3 SAM. These measurements provide insights into the balance of interactions that control the orientational response of LCs to biological species (proteins, viruses, cells) on these surfaces.  相似文献   

6.
徐军 《高分子科学》2014,32(9):1234-1242
The poly(ethylene glycol) (PEG, with Mw 2000)-urea inclusion compound (IC) crystallized at high temperature region showed two typical orientations, flat-on and edge-on crystals. 2D-XRD and polarized FTIR spectroscopy revealed that the PEG chains within urea channels were perpendicular to the substrate in fiat-on oriented crystals, while PEG chain axes were parallel to the substrate and lay along the growth direction in the edge-on crystals. FT1R absorption bands of PEG in the ICs are sensitive to orientation of the crystals. A scheme of PEG chain packing in the urea IC channel was proposed, which could explain the orientation of the crystal nucleus causing the two types of morphologies. Furthermore, functioning of PEG2000 chain end with analine had significantly influence on the morphology and orientation of the inclusion compound crystals, due to the defects caused by large terminal groups included in the urea channel.  相似文献   

7.
The orientational order of the molecules at the liquid-vapor interface of acetone has been investigated by computer simulation. To fully describe the orientational preferences of the acetone molecules, the bivariate joint distribution of two independent orientational parameters has been determined at different layers of the interface. The strength of the orientational ordering of the interfacial molecules has been found to be liquid-like rather than crystal-like. The obtained results have revealed that the interfacial acetone molecules have dual orientational preferences. The main symmetry axis of the molecules declines by about 50-70 degrees from the interface normal axis, pointing toward the liquid phase in both of the preferred orientations. However, the plane of the molecules in the orientation preferred on the liquid side of the interface is perpendicular to the interfacial plane, whereas the other preferred orientation, which is present on the vapor side of the interface, corresponds to the alignment obtained from this orientation by an almost 90 degrees rotation around the main symmetry axis. Because the population of the liquid side is higher than that of the vapor side of the interface, the first of the two preferred orientations is the dominant alignment over the entire interface, in good agreement with recent experimental findings (Chen, H.; Gan, W.; Wu, B. H.; Wu, D.; Zhang, Z.; Wang, H. F. Chem. Phys. Lett. 2005, 408, 284).  相似文献   

8.
We report two methods that involve tailoring of the chemical composition of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl to achieve control over the orientational ordering of the liquid crystal on chemically functionalized surfaces. The first method involves the direct addition of 4-cyano-4'-biphenylcarboxylic acid to 4-cyano-4'-pentylbiphenyl. The second method involves exposure of 4-cyano-4'-pentylbiphenyl to ultraviolet light and photochemical generation of a range of products, including 4-cyano-4'-biphenylcarboxylic acid. The addition of the acid or exposure to ultraviolet light accelerated the rate at which the liquid crystal exhibited an orientational transition from planar to perpendicular (homeotropic) alignment on surfaces presenting ammonium groups. The appearance of the homeotropic orientation of the UV-treated 4-cyano-4'-pentylbiphenyl on ammonium-terminated surfaces was dependent on the thickness of the film of liquid crystal (13-50 mum), consistent with a dipolar coupling between the liquid crystal and the electric field associated with an electrical double layer generated at the ammonium surface. Although the addition of 4-cyano-4'-biphenylcarboxylic acid or UV treatment of the liquid crystal also promoted homeotropic orientations on surfaces presenting hydroxyl groups, the orientations of the UV-treated liquid crystal on the hydroxyl-terminated surface did not change with thickness of the film of liquid crystal in the manner observed on the ammonium-terminated surfaces. The latter result indicates that the mechanism leading to homeotropic anchoring on hydroxyl-terminated surfaces is distinct from that on ammonium-terminated surfaces. Measurements performed using polarization modulation infrared reflection-absorption spectroscopy suggest that hydrogen bonding between the 4-cyano-4'-biphenylcarboxylic acid and the hydroxyl-terminated surface is responsible for the homeotropic anchoring on the surface. Finally, the orientation of the liquid crystal on methyl-terminated surfaces was not influenced by the addition of 4-cyano-4'-biphenylcarboxylic acid nor UV treatment. These results illustrate how the chemical composition of liquid crystals can be manipulated to achieve control over their ordering on surfaces that possess chemical functionality relevant to the development of liquid crystal-based sensors and diagnostic tools. We illustrate the utility of this approach by using the tailored liquid crystal to amplify and optically transduce the presence of proteins arrayed on ammonium-terminated surfaces.  相似文献   

9.
A systematic evaluation of the effects of antibody immobilization strategy on the binding efficiency and selectivity (e.g., ability to distinguish between specific and nonspecific interactions) of immunosurfaces prepared with F(ab') antibody fragments of rabbit Immunoglobulin G (IgG) is described. F(ab') was attached to gold surfaces either (1) directly via the formation of a gold-thiolate bond or (2) indirectly through a series of a bifunctional linkers containing an alkane chain or ethylene glycol spacer. Immobilization of F(ab') via the sulfhydryl reactive group located opposite the antigen binding site ensured optimum orientation of the antigen binding site. X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) were used to confirm surface modification with the bifunctional linkers and antibody immobilization, respectively. Binding efficiency assays performed with SPR indicated that increasing the length of the linker increased the antigen binding efficiency. Atomic force microscopy (AFM) adhesion force measurements indicated that AFM probes functionalized with directly immobilized F(ab') more effectively discriminated between specific and nonspecific surface-bound proteins than probes modified indirectly via linker-immobilized F(ab'). In addition, a greater number of antibody-antigen binding events were observed with directly immobilized F(ab')-functionalized probes.  相似文献   

10.
For a number of potential applications, it is desirable to immobilize avidin class molecules onto solid supports and exploit their ability to bind biotinylated molecules with high affinity. NeutrAvidin molecules were surface immobilized in various ways. In this study, NeutrAvidin was covalently attached by carbodiimide chemistry onto carboxyl groups of polyacrylic acid and carboxymethyl-dextran hydrogel interlayers. A third strategy involved the affinity "docking" of NeutrAvidin onto a biotinylated poly(ethylene glycol) interlayer. These three interlayers were selected for their low nonspecific binding of proteins, which was expected to minimize surface binding of NeutrAvidin by nonspecific interfacial adsorption. X-ray photoelectron spectroscopy (XPS) analyses allowed detailed characterization of the multilayer fabrication steps. An ELISA assay was used to measure NeutrAvidin activity, which varied with the surface immobilization route. Atomic force microcopy (AFM) force measurements showed that the hydrogel interlayer contributed to a repulsive force and verified the specific interaction between biotinylated AFM tips and the NeutrAvidin surfaces. When a solution of free biotin was injected into the AFM liquid cell, the force curve changed substantially and became identical to that recorded between surfaces carrying no NeutrAvidin, indicating that the free solution biotin had displaced NeutrAvidin proteins off the PEG-biotin layer.  相似文献   

11.
This paper reports the design of surfaces on which thermotropic liquid crystals can be used to image affinity microcontact printed proteins. The surfaces comprise gold films deposited onto silica substrates at an oblique angle of incidence and then functionalized with a monolayer formed from 2-mercaptoethylamine. Ellipsometric measurements confirm the transfer of anti-biotin IgG to these surfaces from affinity stamps functionalized with biotinylated bovine serum albumin (BSA), while control experiments performed using anti-goat IgG confirmed the specificity of the IgG capture on the stamp. On these surfaces, anti-biotin IgG caused nematic phases of 4-cyano-4'-pentylbiphenyl (5CB, Delta epsilon = epsilon(parallel) - epsilon(perpendicular) > 0) to assume orientations that were parallel to the surfaces (planar anchoring) but with azimuthal orientations that were distinct from those assumed by the liquid crystals on the amine-terminated surfaces not supporting IgGs. Following incubation of these samples for >8 h at 36 degrees C, we observed that the amine-terminated regions of the surface not supporting IgG cause 5CB to undergo a transition from planar to perpendicular (homeotropic). Because N-(4-methoxybenzylidene)-4-butylaniline (MBBA) (Delta epsilon < 0) does not undergo a similar transition in orientation, this transition is consistent with the effects of an electrical double layer formed at the amine-terminated surface on the liquid crystal. Following the transition to homeotropic anchoring, the liquid crystals provide high optical contrast between regions of the surface supporting and not supporting IgG. We conclude that amine-terminated surfaces (I) uniformly align liquid crystals when not supporting proteins and (II) have sufficiently high surface free energy to capture proteins delivered to the surface from an affinity stamp, and thus they form the basis of a useful class of surfaces on which affinity microcontact printed proteins can be imaged using liquid crystals.  相似文献   

12.
We report a methodology that permits quantitation of the azimuthal anchoring energy of the nematic liquid crystal 4-cyano-4'-pentyl-biphenyl on surfaces patterned with oligopeptides. The oligopeptide (IYGEFKKKC), an optimized substrate for the Src protein kinase, was covalently immobilized via the terminal cysteine to monolayers of amine-terminated tetra(ethylene glycol) formed on gold films. The measurements of anchoring energies, which were based on a torque-balance method, revealed a systematic decrease in anchoring energy from 3.7 +/- 0.6 microJ/m2 with increasing surface density of oligopeptide. We calculate that a mass density of oligopeptide of less than 1 ng/cm2 can lead to a measurable change in the anchoring energy of the nematic liquid crystal. These results suggest that measurements of anchoring energies of liquid crystals on surfaces may offer the basis of quantitative and label-free methods for detecting biomolecules on surfaces.  相似文献   

13.
In this paper we give an overview of experiments that provided an insight into the nature of forces between surfaces and objects in a nematic liquid crystal. These forces, also called ‘structural forces’, are the consequence of the long-range orientational order and orientational elasticity of nematic liquid crystals. Owing to their fundamental as well as technological importance, forces between objects in liquid crystals have been a subject of growing interest during the last decade. Experimental observations and studies of structural forces are described from nanoscale interfacial forces, measured by an atomic force microscope, to the micro-scale forces between colloidal particles in nematics, studied by laser tweezers and optical video microscopy.  相似文献   

14.
In this paper, we report an immunoassay in which probe proteins are immobilized on the surface of liquid crystal (LC) droplets rather than on solid surfaces. The advantage of this immunoassay is that the binding of antibodies to the probe proteins can be transduced by the LC droplets directly without the need for additional steps. For example, when we incubate the LC droplets decorated with immunoglobulin G (IgG) in a solution containing anti-IgG (AIgG), these droplets change their orientations from radial to bipolar configuration. In contrast, when we incubate the IgG-LC droplets in a solution containing anti-human serum albumin (AHSA), no changes are observed. The change of orientational configuration indicates the formation of the antigen-antibody immunocomplex on the surface of the LC droplets. Using LC droplet immunoassays, we successfully detect antibody concentrations as low as 0.01 μg/mL for AIgG and 0.02 μg/mL for AHSA. Because the immunoassay using LC droplets is label-free and gives a unique optical response, it has the potential to be further developed as a portable and low-cost immunoassay.  相似文献   

15.
In the present study, we have utilized X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (ELM), and optical waveguide lightmode spectroscopy (OWLS) to examine the surface adsorption and protein resistance behavior of bio-inspired polymers consisting of poly(ethylene glycol) (PEG) conjugated to peptide mimics of mussel adhesive proteins. Peptides containing up to three residues of 3,4-dihydroxyphenylalanine (DOPA), a key component of mussel adhesive proteins, were conjugated to monomethoxy-terminated PEG polymers. These mPEG-DOPA polymers were found to be highly adhesive to TiO2 surfaces, with quantitative XPS analysis providing useful insight into the binding mechanism. Additionally, the antifouling properties of immobilized PEG were reflected in the excellent resistance of mPEG-DOPA-modified TiO2 surfaces to protein adsorption. Measurements of mPEG-DOPA and human serum adsorption were related in terms of ethylene glycol (EG) surface density and serum mass adsorbed and demonstrated a threshold of approximately 15-20 EG/nm2, above which substantially little protein adsorbs. With respect to surface density of adsorbed PEG and the associated nonfouling behavior of the adlayers, strong parallels exist between the nonfouling properties of the surface-bound mPEG-DOPA polymers and PEG polymers immobilized to surfaces using other approaches. Peptide anchors containing three DOPA residues resulted in PEG surface densities higher than those achieved using several existing PEG immobilization strategies, suggesting that peptide mimics of mussel adhesive proteins may be useful for achieving high densities of protein-resistant polymers on surfaces.  相似文献   

16.
The nature of crystallization- and mobility-induced changes during annealing of melt-spun poly(ethylene terephthalate) precursor fibers of a range of orientations has been examined. The kinetics of crystallization and the accompanying orientational changes have been studied under conditions of constant, low tensile stress, with the accompanying dimensional changes and under a constraint against shrinkage in length, with the stress developed being monitored. The effects of precursor orientation and externally imposed constraints on the course of the fundamental crystallization and orientational relaxation processes are revealed. Oriented crystallization has been shown to have a significant effect on the stress developed and on the dimensions of oriented precursor fibers, with a strong tendency to spontaneously extend as a consequence of the reorientation of crystallizing segments predominantly along the preferred fiber direction. The sequence in which crystallization and major orientational relaxation, if any, occur is found to have a profound effect on the structure and thus the deformability of oriented fibers after annealing above the glass transition temperature.  相似文献   

17.
Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein-NP conjugates to immobilized targets.  相似文献   

18.
The ability to immobilize proteins with high binding capacities on surfaces while maintaining their activity is critical for protein microarrays and other biotechnological applications. We employed poly(acrylic acid) (PAA) brushes as templates to immobilize ribonuclease A (RNase A), which is commonly used to remove RNA from plasmid DNA preparations. The brushes are grown by surface-anchored atom-transfer radical polymerization (ATRP) initiators. RNase A was immobilized by both covalent esterification and a high binding capacity metal-ion complexation method to PAA brushes. The polymer brushes immobilized 30 times more enzyme compared to self-assembled monolayers. As the thickness of the brush increases, the surface density of the RNase A increases monotonically. The immobilization was investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The activity of the immobilized RNase A was determined using UV absorbance. As much as 11.0 microg/cm(2) of RNase A was bound to PAA brushes by metal-ion complexation compared to 5.8 microg/cm(2) by covalent immobilization which is 30 and 16 times the estimated mass bound in a monolayer. The calculated diffusion coefficient D was 0.63 x 10(-14) cm(2)/s for metal-ion complexation and 0.71 x 10(-14) cm(2)/s for covalent immobilization. Similar values of D indicate that the binding kinetics is similar, but the thermodynamic equilibrium coverage varies with the binding chemistry. Immobilization kinetics and thermodynamics were characterized by ellipsometry for both methods. A maximum relative activity of 0.70-0.80 was reached between five and nine monolayers of the immobilized enzyme. However, the relative activity for covalent immobilization was greater than that of metal-ion complexation. Covalent esterification resulted in similar temperature dependence as free enzyme, whereas metal-ion complexation showed no temperature dependence indicating a significant change in conformation.  相似文献   

19.
We present single-molecule confocal microscopy studies of orientational distributions for luminophores isolated in potassium hydrogen phthalate (KAP) crystals. The incorporation of dye molecules that bear no size or shape similarity to the host ions is observed, demonstrating that single-molecule studies on mixed crystals need not be restricted to isomorphous host/guest pairs. Violamine R is oriented and overgrown by the fast vicinal slopes of growth hillocks within the symmetry-related {010} growth sectors and DCM deposits in the {11} growth sectors of KAP. Both mixed crystals exhibit modest absorption dichroism relative to basic pyranine-doped K(2)SO(4). The latter was studied to ensure that a range of orientations was sampled in our experiments. Average orientations determined at the single-molecule level were in close agreement to ensemble-averaged measurements for all three systems, and the chromophore orientational distributions were broader than anticipated, indicating that the crystals incorporate guest molecules in a range of orientations outside the measured ensemble average.  相似文献   

20.
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and microscopy has been used to study the orientational morphology of thin films of the linear alkanes n-C36H74 and n-C60H122, prepared by vacuum deposition onto NaCl (001) surfaces at ambient and elevated substrate temperatures. The orientational morphology, specifically, the nature of domains with lateral and normal orientation, is explored as a function of the chain length and the substrate temperature. It is found that the longer n-C60H122 molecules are laterally oriented on the substrate surface within the investigated substrate temperatures but that the morphology of these thin films varies with substrate temperature. The shorter n-C36H74 molecules are partially laterally oriented at low substrate temperature and are completely normally oriented at high substrate temperature. The relative magnitude of "side-by-side" and "end-to-end" intermolecular interactions leads to the formation of highly ordered alkane structures with a high aspect ratio. The formation of complex, nanoscale orientational morphologies are rationalized by considering kinetic and thermodynamic effects, in particular, the relative enthalpic and entropic contributions to the free energy associated with the different molecular orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号