共查询到20条相似文献,搜索用时 15 毫秒
1.
I. Echeverría A. Urbina 《The European Physical Journal B - Condensed Matter and Complex Systems》2006,50(3):491-496
We have prepared solutions of multiwalled carbon nanotubes in very low
vapour pressure solvents (a mixture of chlorinated biphenyls). The solutions
are stable and show no sign of precipitation for six months. Rheological
measurements using a modified Birnboim apparatus with annular and Sogel-Pochetino geometries have been performed.
Using time-temperature superposition we obtained the real and imaginary part of the complex viscosity coefficient in
a frequency range covering eight orders of magnitude and a temperature range
from 5 to 50 ○C. The data shows unexpected changes in the solution with
temperature: for T below 30 ○C there appears to be some
reorganization or clustering. This self-organization could result in
a useful technique to improve the electronic properties of polymer/carbon
nanotubes composites used in organic electronic devices. 相似文献
2.
An attempt has been made to prepare and characterise ammonium thiocyanate (NH4SCN) salt and a multiwall carbon nanotube (MWNT)-doped polyvinyl alcohol-based nanofibre mats using an electrospinning process. The X-ray diffraction result shows an improvement in the amorphous nature of composite electrolyte fibre mats with increasing concentrations of the MWNT filler. The DSC behaviour of these nanofibre mat exhibits better thermal response upon dispersal of the filler. Composite electrolyte nanofibre mat doped with 6 wt% MWNT shows optimum conductivity, viz., 5.8?×?10?4 Scm?1. The temperature dependence of the bulk electrical conductivity displays a combination of Arrhenius and Vogel–Tammam–Fulcher nature. Dielectric loss studies have also been used to understand the conduction process in the system. Jonscher power law seems to be obeyed during ac conductivity measurements of the fibre mats. 相似文献
3.
在紧束缚理论的基础上,推导出轴向拉伸和扭转形变时碳纳米管(CNT)的能带公式.结果显示拉伸和扭转形变都可以改变CNT的导电性质,在金属型和半导体型之间转变,特别是对于锯齿型CNT,根据n 与3的余数关系,在拉伸和扭转中分别显示出三种不同的变化规律.进一步应用场效应晶体管Natori理论模拟计算形变对CNT场效应晶体管的电流-电压特性的影响,锯齿型CNT根据n 与3的余数关系表现出不同的电流变化趋势,而对于扶手椅型CNT轴向拉伸不改变电流;在扭转形变时,CNT电流急剧升高,特别是扶手椅型CNT.锯齿型CNT和扶手椅型CNT的电流随扭转角度和外电压行为明显不同.在某些特定的扭转角度,电流随扭转角度变化非常显著,显示出锯齿型CNT和扶手椅型CNT发生半导体型与金属型之间的转变.
关键词:
碳纳米管
紧束缚理论
费米能级
能带结构 相似文献
4.
5.
Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in pure acrylic emulsion by ultrasonication to prepare MWCNT/polyacrylate composites applied on building interior wall for electromagnetic interference (EMI) shielding applications. The structure and surface morphology of the MWCNTs and MWCNT/polyacrylate composites were studied by field emission scanning microscopy (FESEM) and transmission electron microscopy (TEM). The electrical conductivity at room temperature and EMI shielding effectiveness (SE) of the composite films on concrete substrate with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in two different frequency ranges of 100-1000 MHz (radio frequency range) and 8.2-12.4 GHz (X-band). The experimental results show that a low mass concentration of MWCNTs could achieve a high conductivity and the EMI SE of the MWCNT/polyacrylate composite films has a strong dependence on MWCNTs content in both two frequency ranges. The SE is higher in X-band than that in radio frequency range. For the composite films with 10 wt.% MWCNTs, the EMI SE of experiment agrees well with that of theoretical prediction in far field. 相似文献
6.
We have investigated electrical transport in a diffusive multiwalled carbon nanotube contacted using superconducting leads made of an Al/Ti sandwich structure. We find proximity-induced superconductivity with measured critical currents up to I(cm)=1.3 nA, tunable by the gate voltage down to 10 pA. The supercurrent branch displays a finite zero bias resistance which varies as R(0) proportional to I(cm){-alpha} with alpha=0.74. Using IV characteristics of junctions with phase diffusion, a good agreement is obtained with the Josephson coupling energy in the long, diffusive junction model of A. D. Zaikin and G. F. Zharkov [Sov. J. Low Temp. Phys. 7, 184 (1981)]. 相似文献
7.
Jesionek M Nowak M Szperlich P Stróż D Szala J Jesionek K Rzychoń T 《Ultrasonics sonochemistry》2012,19(1):179-185
This paper presents, for the first time, the nanocrystalline, semiconducting antimony selenoiodide (SbSeI) grown in multi-walled carbon nanotubes (CNTs). It was prepared sonochemically using elemental Sb, Se, and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2.6 W/cm2) at 323 K for 3 h. The CNTs filled with SbSeI were characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction, and optical diffuse reflection spectroscopy. These investigations exhibit that the SbSeI filling the CNTs is single crystalline in nature and in the form of nanowires. It has indirect allowed energy band gap EgIf = 1.61(6) eV. 相似文献
8.
M. Nowak M. Jesionek P. Szperlich J. Szala T. Rzycho D. Str 《Ultrasonics sonochemistry》2009,16(6):800-804
This paper presents for the first time the nanocrystalline, semiconducting ferroelectrics antimony sulfoiodide (SbSI) grown in multiwalled carbon nanotubes (CNTs). It was prepared sonochemically using elemental Sb, S and I in the presence of methanol under ultrasonic irradiation (35 kHz, 2.6 W/cm2) at 323 K for 3 h. The CNTs filled with SbSI were characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, selected area electron diffraction, and optical diffuse reflection spectroscopy. These investigations exhibit that the SbSI filling the CNTs is single crystalline in nature and in the form of nanowires. It has indirect forbidden energy band gap EgIf = 1.871(1) eV. 相似文献
9.
Atomic force microscopy (AFM) was employed for the morphology measurements of bamboo-shaped multiwalled carbon nanotubes (BS-MWNTs) grown by thermal chemical vapor deposition on Fe catalyst deposited SiO2/Ti substrates. Greater diameters and compartment distances of the bamboo structures were observed for the BS-MWNTs grown at 950 °C than for those grown at 850 °C. 相似文献
10.
Mônica Jung de Andrade Márcio Dias Lima Viera Skákalová Carlos Pérez Bergmann Siegmar Roth 《固体物理学:研究快报》2007,1(5):178-180
Ultra‐thin, optically transparent and electrically conducting films of pure carbon nanotubes (CNTs) are widely studied thanks to their promise for broad applications. In the present work, we study and compare different deposition techniques for the production of these networks: dip‐coating, spray‐coating, vacuum filtration and electrophoretic deposition on a quartz glass using single‐walled carbon nanotubes (SWCNTs) produced by the HiPCo method. In order to optimize the networks, besides the various deposition techniques we also investigate how the optical and electrical properties vary if the networks are fabricated from different CNTs, all synthesized by the CVD method: SWCNTs, DWCNTs and MWCNTs. As the main criteria for evaluating the quality of these CNT networks we measure the electrical surface resistance at a certain optical transmittance and correlate it to the morphology (homogeneity and roughness) of the networks. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
11.
We fabricated carbon nanotube (CNT) emitters by a spray method using a CNT suspension with ethanol. Indium with a low melting pointing metal or indium tin oxide (ITO) was deposited on the glass substrate. The CNTs were sprayed on these layers and thermally annealed. The sprayed CNTs on an ITO were obtained a high emission current density, field enhancement factor, and a uniform emission pattern than the sprayed CNTs on an ITO layer. We found that the sprayed emitters on the indium layer had good field emission characteristics because of the strong adherence between the metal layer and CNTs. 相似文献
12.
Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes 下载免费PDF全文
An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition.Electrochemical properties of the electrodes were investigated.In comparison with the post-deposited SWCNT papers,the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities.A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate.The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current,because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic.The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. 相似文献
13.
14.
15.
Jia-Lin Sun Jia Xu Jia-Lin Zhu Baolei Li 《Applied Physics A: Materials Science & Processing》2008,91(2):229-233
Photovoltaic effects in a disordered multiwalled carbon nanotube mat/nickel heterostructure have been investigated. It is
found that the photovoltage in the whole mat between two nickel electrodes under the irradiation of a 532-nm laser shows a
single-valued function dependence on the light spot position, while it shows an almost linear dependence on light intensity.
Based on the ‘position effect’, the prototype of the light spot position detector has been constructed for the applications
of the disordered multiwalled carbon nanotubes in precision measurement.
PACS 85.60.-q; 72.40.+w; 73.63.-b; 81.07.De; 78.67.-n 相似文献
16.
T. Battumur Swapnil B. Ambade Rohan B. Ambade Pashupati Pokharel Dai Soo Lee Sung-Hwan Han Wonjoo Lee Soo-Hyoung Lee 《Current Applied Physics》2013,13(1):196-204
In order to enhance the capacitance of electrochemical capacitors, multiwalled carbon nanotubes (MWCNTs) and graphene nanosheets (GNS) were added to cobalt oxide (Co3O4) paste. The composite film based on Co3O4/MWCNT/GNS (95:4:1 wt%) exhibited a capacitance of 294 F/g while the capacitance of Co3O4/MWCNT (95:5 wt%) and pure Co3O4 film is 205 and 163 F/g, respectively. The enhanced capacitance of Co3O4/MWCNT/GNS composite film was attributed to the electrochemical contributions of the Co3O4 nanoparticle attached to the GNS as well as their significantly increased specific surface areas by MWCNTs. Furthermore, the composite films showed faradaic redox capacitive behavior to double-layer capacitive behavior due to the different nanostructures of the composites. 相似文献
17.
18.
《Current Applied Physics》2005,5(4):302-304
Multi-walled carbon nanotube (MWNT) nanocomposites with poly(methyl methacrylate) were prepared via both an in situ bulk polymerization and a suspension polymerization using a radical initiator of 2,2-azobisisobutyronitrile (AIBN). Prior to the synthesis, the MWNT was purified in an acidic solution to remove impurities such as metallic catalysts and amorphous carbons. The AIBN induced PMMA was grafted on the MWNT, which was confirmed by a Fourier transform infrared spectrometer (FT-IR). The composite morphology of the MWNT was observed by scanning electron microscopy (SEM). Electrical characteristics were further examined via both a four-probe method and a rotational rheometer equipped with a high voltage generator. 相似文献
19.
单壁碳纳米管能够强烈吸收光线,尤其是在近红外区域,并能将光能转换成热能.同时,单壁碳纳米管还具有相当大的将热能转换成电能的能力.通过真空过滤方法,将由化学气相沉积生成的单壁碳纳米管阵列制备成单壁碳纳米管膜.根据研究的需要设计了一个简单的单壁碳纳米管膜光伏性质测试实验装置,并在其两端成功地实现了由红外光转换为电压输出.通过功能化步骤,制备了单壁碳纳米管/三聚氰胺甲醛树脂复合材料膜,实验结果表明该复合材料能产生符号相反的输出电压.这预示着单壁碳纳米管及其三聚氰胺甲醛树脂复合材料在光电领域具有良好的应用前景. 相似文献
20.
The conduction noise suppression in radio frequency region using film type of the Fe-filled carbon nanotubes and its epoxy composite was evaluated on a coplanar waveguide. Fe in carbon nanotubes have shown α-Fe crystalline structure and had a coercivity of 650 Oe. The magnitudes of the signal attenuation of Fe-filled carbon nanotubes on coplanar waveguide were shown in the range of about 10–18 dB/cm at 20 GHz (the stop-band frequency region). The power losses of these films exhibited 65–85% at 20 GHz in the stop-band frequency. 相似文献