首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct radical cations have been observed by ESR in a γ-irradiated solid solution of hexafluoro-1,3-butadiene in freon. INDO calculations of ES  相似文献   

2.
3.
Hexafluoro-1,3-butadiene, with its negligible global warming potential, is required in quantities for application in plasma dielectric etching in semiconductor industry and as gaseous microbubble suspension contrast agents in diagnostic ultrasound imaging. Three efficient protocols for the preparation of perfluoro-1,3-butadiene in 62–70% overall yields have been described. They involve the coupling of (1) iodotrifluoroethylene (ITFE) with activated copper, (2) trifluorovinylzinc bromide in the presence of copper (II) or iron (III) salts and (3) trifluorovinylzinc chloride, prepared from 1,1,1,2-tetrafluorethane (HFC 134a) in the presence of copper (II) or iron (III) salts.  相似文献   

4.
Isotropic and anisotropic ESR spectra were observed for the radical anions of hexafluorocyclobutene (c-C(4)F(6)(-)), octafluorocyclopentene (c-C(5)F(8)(-)) and perfluoro-2-butene (CF(3)CF=CFCF(3)(-)) in gamma-irradiated plastically crystalline neopentane, tetramethylsilane (TMS) and TMS-d(12) matrices, or the rigid 2-methyltetrahydrofuran (MTHF) matrix. The isotropic spectra of c-C(4)F(6)(-) and c-C(5)F(8)(-) are characterized by three different sets of pairs of (19)F nuclei with the isotropic hyperfine (hf) splittings of 15.2 (2F), 6.5 (2F), 1.1 (2F) mT for c-C(4)F(6)(-) and 14.7 (2F), 7.4 (2F), 1.0 (2F) mT for c-C(5)F(8)(-). By comparison with the results of ab initio quantum chemical computations, the large triplet (19)F hf splittings of ca. 15 mT are assigned to the two fluorines attached to the C=C bond. The UHF, B3LYP and MP2 computations predict that the geometrical structures of the perfluoroalkenes are strongly distorted by one-electron reduction to form their radical anions; c-C(3)F(4)(-): C(2) symmetry ((2)A state) <-- C(2)(v) ((1)A(1)), c-C(4)F(6)(-): C(1) ((2)A) <-- C(2)(v) ((1)A(1)) and c-C(5)F(8)(-): C(1) ((2)A) <-- C(s) ((1)A'). The structural distortion arises from a mixing of the pi* and higher-lying sigma* orbitals at the C=C carbons similar to that previously found for CF(2)=CF(2)(-) with a C(2)(h) distortion. The isotropic (19)F hf splittings computed with the B3LYP method with 6-311+G(2df,p) basis set for the geometry optimized by the UHF and/or MP2 methods are within 6% error of the experimental values. The experimental anisotropic spectra of c-C(4)F(6)(-), c-C(5)F(8)(-) and CF(2)=CF(2)(-) were satisfactorily reproduced by the ESR spectral simulation method using the computed hf principal values and orientation of (19)F nuclei. In addition, the electronic excitation energies and oscillator strengths for the CF(2)=CF(2)(-), c-C(3)F(4)(-), c-C(4)F(6)(-) and c-C(5)F(8)(-) radical anions were computed for the first time by TD-DFT methods.  相似文献   

5.
The conversion of the cyclobutene cation radical to the 1,3-butadiene cation radical has been studied using MINDO /3 and ab initio SCF MO methods. Not only smooth electrocyclic but also stepwise, non-electrocyclic routes were considered. Both calculational methods agree that the preferred reaction path is a novel nonelectrocyclic one proceeding through an intermediate “cyclopropylcarbinyl cation radical.” The quantitative agreement in the activation parameters calculated by the two methods is excellent. The proposed intermediate also provides an attractive explanation for the mass spectrometric fragmentation patterns of the cyclobutene and butadiene cation radicals.  相似文献   

6.
Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce (4+) in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-Tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' beta-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron-nuclear double resonance, or high-field ESR. This approach also produces geometric parameters (dihedral angles for the beta-methylene hydrogens) that should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals.  相似文献   

7.
Ionic and photochemical reaction of chlorine (Cl2), bromine (Br2) and iodine monochloride (ICl) to hexafluoro-1,3-butadiene (1) and 1,3-butadiene (2) were carried out under conditions that would provide product distributions under controlled ionic or free-radical conditions. Product distributions for ionic reaction of Cl2 and Br2 with 1 are similar and suggest a weakly-bridged halonium ion species. Theoretical calculations support weakly-bridged chloronium and bromonium ions for both dienes 1 and 2. There are more of the 1,4-dihalo-2-butene products from ionic halogenation of 1 than 2 which correlates with the greater charge density on carbon-4 of halonium ions from 1. Ionic and free-radical reactions of ICl with 1 give 8 and 2% of 3-chloro-4-iodohexafluoro-1-butene and 4-chloro-3-iodohexafluoro-1-butene, respectively. The minor cis-1,4-dihalo-2-butene products from 1 and 2 are reported when formed.  相似文献   

8.
9.
The present review describes the anionic polymerization of hexafluoro-1,3 -butadiene (HFBD) and the characterization of the polymer. HFBD which is hardly polymerized under radical polymerization conditions yielded the polymer with cesium and rubidium compounds as initiators in moderate conditions. X-ray photoelectron spectra and Raman spectra showed the structure of the polymer was similar to that of poly(hexafluoro-2-butyne). The polymerization mechanism, an addition reaction of the propagating anion to the 2-carbon of HFBD followed by isomerization of the propagating end group to yield the polyene structure, is proposed from the results of the investigation of initiation reaction and the structure of the polymers. Poly(HFBD) shows higher thermostability than poly(tetrafluoroethylene) in spite of bearing functional -CC-groups in the polymer main chain.  相似文献   

10.
Anisotropic electron spin resonance (ESR) spectra are reported for the radical anions of hexafluorocyclopropane (c-C(3)F(6)(-)), octafluorocyclobutane (c-C(4)F(8)(-)), and decafluorocyclopentane (c-C(5)F(10)(-)) generated via gamma-irradiation in plastically crystalline tetramethylsilane (TMS) and rigid 2-methyltetrahydrofuran (MTHF) matrices. By combining the analysis of these experimental ESR spectra involving anisotropic hyperfine (hf) couplings with a series of quantum chemical computations, the geometrical and electronic structure of these unusual perfluorocycloalkane radical anions have been characterized more fully than in previous studies that considered only the isotropic couplings. Unrestricted Hartree-Fock (UHF) computations with the 6-311+G(d,p) basis set predict planar ring structures for all three radical anions, the ground electronic states being (2)A(2)(") for c-C(3)F(6)(-) (D(3h) symmetry), (2)A(2u) for c-C(4)F(8)(-) (D(4h)), and (2)A(2)(") for c-C(5)F(10)(-) (D(5h)), in which the respective six, eight, and ten 19F-atoms are equivalent by symmetry. A successful test of the theoretical computation is indicated by the fact that the isotropic 19F hf couplings computed by the B3LYP method with the 6-311+G(2df,p) basis set for the optimized geometries are in almost perfect agreement with the experimental values: viz., 19.8 mT (exp) vs 19.78 mT (calc) for c-C(3)F(6)(-); 14.85 mT (exp) vs 14.84 mT (calc) for c-C(4)F(8)(-); 11.6 mT (exp) vs 11.65 mT (calc) for c-C(5)F(10)(-). Consequently, the same computation method has been applied to calculate the almost axially symmetric anisotropic 19F hf couplings for the magnetically equivalent 19F atoms: (-4.90 mT, -4.84 mT, 9.75 mT) for c-C(3)F(6), (-3.54 mT, -3.48 mT, 7.02 mT) for c-C(4)F(8)(-), and (-2.62 mT, -2.56 mT, 5.18 mT) for c-C(5)F(10)(-). ESR spectral simulations performed using the computed principal values of the hf couplings and the spatial orientations of the 19F nuclei as input parameters reveal an excellent fit to the experimental anisotropic ESR spectra of c-C(3)F(6)(-), c-C(4)F(8)(-), and c-C(5)F(10)(-), thereby providing a convincing proof of the highly symmetric D(nh) structures that are predicted for these negative ions. Furthermore, using the computed 19F principal values and their orientations, the effective 19F anisotropic hf couplings along the molecular symmetry axes were evaluated for c-C(3)F(6)(-) and c-C(4)F(8)(-) and successfully correlated with the positions of the characteristic outermost features in both the experimental and calculated anisotropic spectra. In addition, the electronic excitation energies and oscillator strengths for the c-C(3)F(6)(-) , c-C(4)F(8)(-), and c-C(5)F(10)(-) radical anions were computed for the first time using time-dependent density functional theory (TD-DFT) methods.  相似文献   

11.
Hexafluoro-1,3-butadiene was readily prepared via a variety of self-coupling processes, such as Cu(0) mediated self-coupling of iodotrifluoroethene, Pd(0) catalyzed coupling of iodotrifluoroethene with the trifluorovinylzinc reagent, and CuBr2 mediated coupling of the trifluorovinylzinc reagent. Perfluoro-2,3-dimethyl-1,3-butadiene was readily synthesized by the reaction of pentafluoropropenyl-2-zinc reagent with either CuBr2 or FeCl3. Alternatively, perfluoro-2,3-dimethyl-1,3-butadiene was prepared by oxidation of the pentafluoropropenyl-2-copper reagent with dioxygen. Cu(0) mediated coupling of an (E)-substituted ,β-difluoro-β-iodostyrene provided the first useful route to a (Z)(Z)-1,4-diaryl-1,3-tetrafluorobutadiene. Extension of the Cu(0) mediated coupling methodology to a perfluorodienyl iodide demonstrated a useful stereospecific route to perfluoropolyenes.  相似文献   

12.
《Tetrahedron》1986,42(22):6235-6244
Mass spectrometric techniques are now used extensively for the study of gas-phase radical cation chemistry. The generation and structural properties, the unimolecular and bimolecular chemistry of some representative radical cation systems, and the methods of study are reviewed. The structure of the ionmolecule adduct produced in the reaction of the benzene radical cation and neutral 1,3-butadiene was investigated by collisionally stabilizing the adduct and then acquiring its collision-activated decomposition spectrum. The CAD spectrum of the adduct changes dramatically as a function of the degree of collisional stabilization. This observation is interpreted in terms of two distinct structures for the adduct. The species that is stabilized at 0.7 Torr has a CAD spectrum similar to the 2-phenyl-2-butene radical cation. The second structure, stabilized at 0.1 Torr, has a CAD similar to that of 1-methylindan. The results of these experiments are interpreted in terms of a two-step cycloaddition mechanism for the formation of the 1-methylindan radical cation.  相似文献   

13.
The 1,3-butadiene radical cation reacts with acrolein and methyl vinyl ketone to produce ‘stable’ adducts. The nature of the reaction and the structures of the adducts were investigated by collisional activation decomposition (CAD) combined with tandem mass spectrometry (MS/MS), and also by Fourier transform mass spectrometry. The CAD spectra of gas-phase adducts were compared with those of suitable model compounds. On that basis, it was determined that the 1,3-butadiene radical cation undergoes a cycloaddition with these α,β-unsaturated carbonyl compounds. The butadiene radical cation serves as the ‘ene’, and the acrolein and methyl vinyl ketone react as dienes, forming cycloadducts having 2-ethenyl-2,3-dihydropyran radical cation structures.  相似文献   

14.
The silacyclobutane radical cation is a prototype intermediate in chemical reactions involving Si based organic molecules. In the interest of its full characterization, the experimentally determined isotropic hyperfine coupling constants of the hydrogens in silacyclobutane radical cation (c-SiC(3)(+)) have raised some interesting questions, leading to different interpretations of the spectrum. To help resolve this discrepancy, we report very high-level theoretical results with coupled-cluster theory using its analytical, response density matrix procedure, and recently proposed basis sets that are specific to ESR. The detailed studies of geometries, basis set effects, and electron correlation tend to support the B3LYP/6-31G-based reassignment of the ESR spectrum of the c-SiC(3)(+) radical cation by F?ngstr?m et al.  相似文献   

15.
16.
Results of a quantum-chemical study of the molecular structure of dimerization products of saturated 1,3-butadiene and hexafluoro-1,3-butadiene (tricyclo[3.3.0.02.6]octane, dodecafluorotricyclo[4.2.0.02.5]octane (I), and dodecafluorotricyclo[3.3.0.02.6]octane (II)) are presented. The calculated symmetry of the molecule of I in vacuum (C 2) differs from its symmetry in the single crystal (C b , XRD). The most stable of dimers (II) contains C-C bonds with a length of up to 1.573 Å and a four-atom cycle with angles of 82.3°.  相似文献   

17.
The mechanism of thermal oligomerization of hexafluoro-l,3-butadiene was examined using RHF, ROHF, and GVB/DH, and by B3LYP/6-31G* and /6-311G* quantum-chemical methods. The energies of highly reactive excited states of the monomer and of intermediate biradical species were estimated. Isomeric biradicals (excited monomers and dimers) with the free valences localized on two carbon atoms were shown to coexist in the reaction mixture. Recombination of such biradicals and their reactions with neutral stable molecules give rise to diverse products, depending on the reaction temperature.  相似文献   

18.
Density functional (B3LYP) calculations, using the 6-31G basis set, have been employed to study the title reactions. For the model reaction (H(2)C=C-NH(+)=CH(2) + H(2)C=CH(2)), a complex has been formed with 6.2 kcal/mol of stabilization energy and the transition state is 4.0 kcal/mol above this complex, but 2.1 kcal/mol below the reactants. However, the substituent effects are quite remarkable. When ethene is substituted by electron-withdrawing group CN, the reaction could also yield six-membered-ring products, but the energy barriers are all more than 7 kcal/mol, which shows that CN group unfavors the reaction. The other substituents, such as CH(3)O and CH(3) groups, have also been considered in the present work, and the results show that they are favorable for the formation of six-membered-ring adducts. The calculated results have been rationalized with frontier orbital interaction and topological analysis.  相似文献   

19.
冯良波  汪汉卿 《化学学报》1984,42(4):388-390
有机硅自由基的电子自旋共振(ESR)的研究一直十分活跃,Bock等已做了大量工作。然而,对于三苯基硅自由基的ESR研究报道却甚少。采用X射线辐照单晶生成的三苯基硅自由基的ESR谱并未获得理想的超精细结构谱,而采用三苯基硅烷与二苯甲酮热反应仅获得Ph_2COSiPh_3自由基的ESR谱。本文报道在氯仿溶液中,用无水三氯化铝与三苯基硅醇或三苯基硅烷在室温下反应,获得三苯基硅烷正离子自由基(Ph_3Si~+)ESR的研究结果,并进行计算机模拟。  相似文献   

20.
A comprehensive high resolution electron paramagnetic resonance (EPR) characterization of the l-methionine radical cation and its N-acetyl derivative in liquid solution at room temperature is presented. The cations were generated photochemically in high yield by excimer laser excitation of a water soluble dye, anthraquinone sulfonate sodium salt, the excited triplet state of which is quenched by electron transfer from the side chain sulfur atom of methionine or N-acetylmethionine. The radicals were detected by continuous wave (CW) time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz) and Q-band (35 GHz) microwave frequencies. At pH values well below the pK(a) of the protonated amine nitrogen, the cation forms a dimer with another ground-state methionine molecule through a S-S three-electron bond. In basic solution, the lone pair on the nitrogen of the amino acid is available to make an intramolecular S-N three-electron bond with the side chain sulfur atom, leading to a five-membered ring structure for the cation. When the amino acid nitrogen is unsubstituted (methionine itself), rapid deprotonation to an aminyl radical takes place at high pH values. If the nitrogen is substituted (N-acetylmethionine), the cyclic structure is observed within its electron spin relaxation time at about 1 micros. Spectral simulation provides chemical shifts (g-factors) and hyperfine coupling constants for all structures, and isotopic labeling experiments strongly support the assignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号