首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that any weak solution to the full Navier–Stokes–Fourier system emanating from the data belonging to the Sobolev space W 3,2 remains regular as long as the velocity gradient is bounded. The proof is based on the weak-strong uniqueness property and parabolic a priori estimates for the local strong solutions.  相似文献   

2.
We are concerned with the problem, originated from Seregin (159–200, 2007), Seregin (J. Math. Sci. 143: 2961–2968, 2007), Seregin (Russ. Math. Surv. 62:149–168, 2007), what are minimal sufficiently conditions for the regularity of suitable weak solutions to the 3D Navier–Stokes equations. We prove some interior regularity criteria, in terms of either one component of the velocity with sufficiently small local scaled norm and the rest part with bounded local scaled norm, or horizontal part of the vorticity with sufficiently small local scaled norm and the vertical part with bounded local scaled norm. It is also shown that only the smallness on the local scaled L 2 norm of horizontal gradient without any other condition on the vertical gradient can still ensure the regularity of suitable weak solutions. All these conclusions improve pervious results on the local scaled norm type regularity conditions.  相似文献   

3.
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing z0=(x0, t0)z_{0}=(x_{0}, t_{0}), and let Qz0,r = Bx0,r ×(t0 -r2, t0)Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0}) be a parabolic cylinder in the domain. We show that if either $\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r}) with $\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r}) with \frac3g + \frac2a £ 2\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.  相似文献   

4.
New sufficient conditions of local regularity for suitable weak solutions to the non-stationary three-dimensional Navier–Stokes equations are proved. They contain the celebrated Caffarelli–Kohn–Nirenberg theorem as a particular case.   相似文献   

5.
Consider a bounded domain ${{\Omega \subseteq \mathbb{R}^3}}$ with smooth boundary, some initial value ${{u_0 \in L^2_{\sigma}(\Omega )}}$ , and a weak solution u of the Navier–Stokes system in ${{[0,T) \times\Omega,\,0 < T \le \infty}}$ . Our aim is to develop regularity and uniqueness conditions for u which are based on the Besov space $$B^{q,s}(\Omega ):=\left\{v\in L^2_{\sigma}(\Omega ); \|v\|_{B^{q,s}(\Omega )} := \left(\int\limits^{\infty}_0 \left\|e^{-\tau A}v\right\|^s_q {\rm d} \tau\right)^{1/s}<\infty \right\}$$ with ${{2 < s < \infty,\,3 < q <\infty,\,\frac2{s}+\frac{3}{q} = 1}}$ ; here A denotes the Stokes operator. This space, introduced by Farwig et al. (Ann. Univ. Ferrara 55:89–110, 2009 and J. Math. Fluid Mech. 14: 529–540, 2012), is a subspace of the well known Besov space ${{{\mathbb{B}}^{-2/s}_{q,s}(\Omega )}}$ , see Amann (Nonhomogeneous Navier–Stokes Equations with Integrable Low-Regularity Data. Int. Math. Ser. pp. 1–28. Kluwer/Plenum, New York, 2002). Our main results on the regularity of u exploits a variant of the space ${{B^{q,s}(\Omega )}}$ in which the integral in time has to be considered only on finite intervals (0, δ ) with ${{\delta \to 0}}$ . Further we discuss several criteria for uniqueness and local right-hand regularity, in particular, if u satisfies Serrin’s limit condition ${{u\in L^{\infty}_{\text{loc}}([0,T);L^3_{\sigma}(\Omega ))}}$ . Finally, we obtain a large class of regular weak solutions u defined by a smallness condition ${{\|u_0\|_{B^{q,s}(\Omega )} \le K}}$ with some constant ${{K=K(\Omega, q)>0}}$ .  相似文献   

6.
We give simple proofs that a weak solution u of the Navier–Stokes equations with H 1 initial data remains strong on the time interval [0, T] if it satisfies the Prodi–Serrin type condition uL s (0, T;L r,∞(Ω)) or if its L s,∞(0, T;L r,∞(Ω)) norm is sufficiently small, where 3 < r ≤ ∞ and (3/r) + (2/s) = 1.  相似文献   

7.
8.
We consider the stationary Navier–Stokes equations in a bounded domain Ω in R n with smooth connected boundary, where n = 2, 3 or 4. In case that n = 3 or 4, existence of very weak solutions in L n (Ω) is proved for the data belonging to some Sobolev spaces of negative order. Moreover we obtain complete L q -regularity results on very weak solutions in L n (Ω). If n = 2, then similar results are also proved for very weak solutions in with any q 0 > 2. We impose neither smallness conditions on the external force nor boundary data for our existence and regularity results.  相似文献   

9.
We prove a criterion of local Hölder continuity for suitable weak solutions to the Navier—Stokes equations. One of the main part of the proof, based on a blow-up procedure, has quite general nature and can be applied to other problems in spaces of solenoidal vector fields.  相似文献   

10.
11.
The authors establish a Serrin-type blowup criterion for the Cauchy problem of the three-dimensional full compressible Navier–Stokes system, which states that a strong or smooth solution exists globally, provided that the velocity satisfies Serrin’s condition and that the temporal integral of the maximum norm of the divergence of the velocity is bounded. In particular, this criterion extends the well-known Serrin’s blowup criterion for the three-dimensional incompressible Navier–Stokes equations to the three-dimensional full compressible system and is just the same as that of the barotropic case.  相似文献   

12.
We consider the incompressible Navier–Stokes equations in Ω ×?(0, T), where Ω is a domain in ${\mathbb{R}^3}$ . We give regularity criteria in terms of the pressure in Lorentz spaces with the corresponding small norm. In particular, our results extend previous ones to the Lorentz space with respect to temporal variable.  相似文献   

13.
We consider the Cauchy problem for incompressible Navier–Stokes equations with initial data in , and study in some detail the smoothing effect of the equation. We prove that for T < ∞ and for any positive integers n and m we have , as long as stays finite.  相似文献   

14.
We consider the compressible Navier–Stokes equations for viscous and barotropic fluids with density dependent viscosity. The aim is to investigate mathematical properties of solutions of the Navier–Stokes equations using solutions of the pressureless Navier–Stokes equations, that we call quasi solutions. This regime corresponds to the limit of highly compressible flows. In this paper we are interested in proving the announced result in Haspot (Proceedings of the 14th international conference on hyperbolic problems held in Padova, pp 667–674, 2014) concerning the existence of global weak solution for the quasi-solutions, we also observe that for some choice of initial data (irrotationnal) the quasi solutions verify the porous media, the heat equation or the fast diffusion equations in function of the structure of the viscosity coefficients. In particular it implies that it exists classical quasi-solutions in the sense that they are \({C^{\infty}}\) on \({(0,T)\times \mathbb{R}^{N}}\) for any \({T > 0}\). Finally we show the convergence of the global weak solution of compressible Navier–Stokes equations to the quasi solutions in the case of a vanishing pressure limit process. In particular for highly compressible equations the speed of propagation of the density is quasi finite when the viscosity corresponds to \({\mu(\rho)=\rho^{\alpha}}\) with \({\alpha > 1}\). Furthermore the density is not far from converging asymptotically in time to the Barrenblatt solution of mass the initial density \({\rho_{0}}\).  相似文献   

15.
In this article we prove some sharp regularity results for the stationary and the evolution Navier–Stokes equations with shear dependent viscosity, see (1.1), under the no-slip boundary condition(1.4). We are interested in regularity results for the second order derivatives of the velocity and for the first order derivatives of the pressure up to the boundary, in dimension n ≥ 3. In reference [4] we consider the stationary problem in the half space \mathbbR+n{\mathbb{R}}_+^n under slip and no-slip boundary conditions. Here, by working in a simpler context, we concentrate on the basic ideas of proofs. We consider a cubic domain and impose our boundary condition (1.4) only on two opposite faces. On the other faces we assume periodicity, as a device to avoid unessential technical difficulties. This choice is made so that we work in a bounded domain Ω and, at the same time, with a flat boundary. In the last section we provide the extension of the results from the stationary to the evolution problem.  相似文献   

16.
We investigate a class of weak solutions, the so-called very weak solutions, to stationary and nonstationary Navier–Stokes equations in a bounded domain . This notion was introduced by Amann [3], [4] for the nonstationary case with nonhomogeneous boundary data leading to a very large solution class of low regularity. Here we are mainly interested in the investigation of the “largest possible” class of solutions u for the more general problem with arbitrary divergence k = div u, boundary data g = u|∂Ω and an external force f, as weak as possible, but maintaining uniqueness. In principle, we will follow Amann’s approach.  相似文献   

17.
Consider a smooth bounded domain ${\Omega \subseteq {\mathbb{R}}^3}$ , a time interval [0, T), 0?<?T?≤?∞, and a weak solution u of the Navier–Stokes system. Our aim is to develop several new sufficient conditions on u yielding uniqueness and/or regularity. Based on semigroup properties of the Stokes operator we obtain that the local left-hand Serrin condition for each ${t\in (0,T)}$ is sufficient for the regularity of u. Somehow optimal conditions are obtained in terms of Besov spaces. In particular we obtain such properties under the limiting Serrin condition ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ . The complete regularity under this condition has been shown recently for bounded domains using some additional assumptions in particular on the pressure. Our result avoids such assumptions but yields global uniqueness and the right-hand regularity at each time when ${u \in L_{\rm loc}^\infty([0,T);L^3(\Omega))}$ or when ${u(t)\in L^3(\Omega)}$ pointwise and u satisfies the energy equality. In the last section we obtain uniqueness and right-hand regularity for completely general domains.  相似文献   

18.
Let X be a suitable function space and let ${\mathcal{G} \subset X}$ be the set of divergence free vector fields generating a global, smooth solution to the incompressible, homogeneous three-dimensional Navier–Stokes equations. We prove that a sequence of divergence free vector fields converging in the sense of distributions to an element of ${\mathcal{G}}$ belongs to ${\mathcal{G}}$ if n is large enough, provided the convergence holds “anisotropically” in frequency space. Typically, this excludes self-similar type convergence. Anisotropy appears as an important qualitative feature in the analysis of the Navier–Stokes equations; it is also shown that initial data which do not belong to ${\mathcal{G}}$ (hence which produce a solution blowing up in finite time) cannot have a strong anisotropy in their frequency support.  相似文献   

19.
20.
We consider the Navier–Stokes equations for the motion of compressible, viscous flows in a half-space ${\mathbb{R}^n_+,}$ n =  2,  3, with the no-slip boundary conditions. We prove the existence of a global weak solution when the initial data are close to a static equilibrium. The density of the weak solution is uniformly bounded and does not contain a vacuum, the velocity is Hölder continuous in (x, t) and the material acceleration is weakly differentiable. The weak solutions of this type were introduced by D. Hoff in Arch Ration Mech Anal 114(1):15–46, (1991), Commun Pure and Appl Math 55(11):1365–1407, (2002) for the initial-boundary value problem in ${\Omega = \mathbb{R}^n}$ and for the problem in ${\Omega = \mathbb{R}^n_+}$ with the Navier boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号