首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
辽河和孤岛渣油供氢与生焦趋势   总被引:2,自引:2,他引:0  
首先以蒽为化学探针对孤岛,辽河和胜利减压渣油及其四组分的氢转移能力进行表征,原理是,蒽与渣油在350-400℃热反应,渣油向蒽供氢,使蒽率成9,10-二氢蒽,用气相色谱分析定量测定热反应产物中的9,10-二氢蒽,并计算出单位重量油样供氢量;然后在400℃下热处理测定三种渣油的生焦诱导期。  相似文献   

2.
辽河和孤岛渣油供氢能力与生焦趋势   总被引:5,自引:1,他引:4  
首先以蒽为化学探针对孤岛、辽河和胜利减压渣油及其四组分的氢转移能力进行表征,原理是,蒽与渣油在350~400℃热反应,渣油向蒽供氢,使蒽转化成9,10-二氢蒽,用气相色谱分析定量测定热反应产物中的9,10-二氢蒽,并计算出单位重量油样供氢量;然后在400℃下热处理测定三种渣油的生焦诱导期(定义为生焦01%时所用时间)。结果发现:虽然它们四组分相近,但氢转移潜力相差较大,特别是它们的沥青质的氢转移能力相差悬殊;渣油热生焦诱导期长短与它们氢转移能力趋势一致  相似文献   

3.
以蒽为化学夺氢探针,采用 1H-NMR为检测手段测定了三种典型重质渣油及其亚组分在380℃、临氮初压4MPa、反应8 min条件下的可供氢含量,并分析了产物的甲苯不溶物、液体馏程分布以及气体组成。结果表明,本实验条件下的热反应较为缓和,渣油及组分反应前后结构变化不明显,样品体系内部主要发生渣油及组分向夺氢体(蒽)的氢转移反应。1H-NMR中化学位移在1.4~2.0的H和2.5~4.7的H含量的变化值与化学探针法测定的实际可供氢量有较好的线性关联,可利用此两段化学位移内的氢含量评价不同重质油品在缓和热改质过程中的相对供氢能力。  相似文献   

4.
供氢剂与分散型催化剂协同作用的研究   总被引:8,自引:4,他引:4  
以辽河渣油为原料,四氢萘为供氢剂,二烷基二硫代氨基甲酸钼为油溶性催化剂在高压釜中进行裂化反应,比较了临氢裂化,临氢供氢裂化,催化加氢裂化以及供氢剂与分散型催化剂共同存在下的加氢裂化,在同样生焦量的情况下,渣油裂化转化率的顺序为:临氢催化供氢过程>临氢催化过程>临氢供氢过程>临氢过程,同时发现供氢剂与分散型催化剂在渣油加氢裂化过程中具有协同作用,与单独使用分散型催化剂的改质反应相比,供氢剂的协同作用不但可以在低转化率下延迟生焦诱导期,提高渣油生焦前的最大转化率,而且在高转化率下对渣油的缩合反应有更大的抑制作用。由420-440℃四集总表观动力学模型计算出的动力学速率常数和活化能表明,供氢剂与分散型催化剂产生的协同作用提高了沥青质和焦生成的活化能,极大地抑制了沥青质和焦生成 速率,而对可溶质生成馏分油的裂化反应的抑制作用很小。  相似文献   

5.
饱和烃促进渣油热反应初期生焦的考察   总被引:2,自引:6,他引:2  
研究了石油渣油饱和烃的热裂化夺氢化学对渣油热反应体系生焦的影响,对由饱和烃-供氢探针、饱和烃-沥青质组成的二元模型反应体系,以及由饱和烃-供氢探针-沥青质组成的三元模型反应体系,分别进行高压热反应;然后关联二元反应体系和三元反应体系中饱和烃夺氢能力及供氢探针的供氢量和沥青质生焦率。结果表明饱和烃夺氢能力可促进沥青质生焦;并且饱和烃的热裂化夺氢反应性能与饱和烃的物理沉积性能相比较,前者更能促进沥青质形成凝聚相而生焦。进而测定四种减压渣油的热反应生焦趋势,发现渣油饱和分的夺氢量与渣油热反应被期的生焦趋势密切相关,而较苛刻的条件下的生焦趋势主要是由原料渣油残炭值所决定。  相似文献   

6.
催化剂和供氢剂对渣油模型化合物裂化反应选择性的影响   总被引:1,自引:2,他引:1  
供氢剂与分散性催化剂协同作用对于传统的煤液化体系和渣油加氢裂化体系非常重要。通过活化分子氢及煤分子,使液化反应在较低的温度下进行以减少副反应,继而提高氢转移效率,增加液体产物产率。供氢剂和催化剂起促进煤分子裂化的作用。将供氢剂与催化剂的协同作用应用于渣油加  相似文献   

7.
供氢剂多用于煤催化或非催化液化[1] 以及渣油的减粘改质[2~ 4] 和渣油加氢裂化的研究[5] 。从渣油模型化合物角度可以比较容易的研究供氢剂。前报[6] 以正二十烷作为渣油的模型化合物 ,研究临氮热反应、临氢热反应和临氢催化反应中供氢剂对正构烷烃裂化的作用 ,证明气相氢和供氢剂是两种性质不同的氢源 ,前者加速裂化 ,后者抑制裂化。供氢剂供氢行为依赖于反应体系中自由基的多少 ,温度以及反应过程 ,较多的自由基和较高的反应温度有利于供氢行为。由于反应物中都有氢元素 ,使用可标记的同位素 ,可以清楚的研究反应过程的机理。氘作为氢的…  相似文献   

8.
减压渣油供氢剂减黏裂化研究   总被引:3,自引:1,他引:3  
减黏裂化作为一种不生成焦炭的热加工方法主要涉及两类化学反应,裂解反应和缩合反应。裂解反应使减压渣油的平均分子量及其胶团直径变小,改善渣油的倾点和黏度;缩合反应使减压渣油及其中间产物中的芳烃、烯烃等缩合成大分子量产物,产生新的胶核,甚至生成焦炭。常规减黏裂化过程中,这两类化学反应主要与反应温度和反应时间有关。在热作用下渣油中的大分子裂解为H/C原子比相对较高的饱和烃自由基和H/C原子比相对较低的芳香性自由基。后者还可失去自身的环烷氢而使其H/C原子比进一步降低。如果体系中有足量的氢化芳烃存在,那么氢化芳烃分子上的活泼氢就可能转移到芳香性自由基的单电子位,将自由基封闭,从而阻止芳香性自由基之间的相互缩合,抑制使分子长大的缩合反应。如果体系中的氢化芳烃含量不足。则热反应体系中就没有足够的活泼氢将芳香性自由基封闭,芳香性自由基缩合反应的几率较高,造成过早地生焦。这种来自渣油分子自身的活泼氢的化学行为与渣油热反应生焦诱导期有一定关系。  相似文献   

9.
采用小型固定流化床装置(ACE Model C),研究了在反应温度460-540℃下,模型化合物十氢萘在Y分子筛催化剂上的裂化反应路径及生焦机理。结果表明,十氢萘裂化的初始阶段,H+进攻十氢萘上与叔碳原子相连的C-H键和C-C键形成非经典五配位叔正碳离子是其最主要的引发反应;十氢萘裂化产物主要是丙烯、丙烷、异丁烷、异戊烷、甲基环戊烷、甲苯、二甲基苯等;产物的收率在催化剂上由大到小为,非芳烃、单环芳烃、双环芳烃;十氢萘催化生焦的机理是碳正离子机理,随反应温度和分子筛酸量的升高,双分子氢转移以及脱氢缩合能力增强,焦炭产率和转化率也随之升高。  相似文献   

10.
研究了辽河减渣四组分在微型高压釜内中临氮热裂化、临氢热裂化和临氢催化加氢反应,考察了供氢剂或供氘剂对上述反应的影响。结果表明,临氮热裂化时沥青质是大量生焦的物种,胶质的生焦能力不显著,芳香分、饱和分不生焦;临氢热裂化沥青质生焦量减少,胶质很少生焦,芳香分和饱和分不生焦;临氢催化加氢时,辽河减渣四组分在临氢反应基础之上,生焦量进一步降低。辽河减渣四组分在临氮热裂化、临氢热裂化和临氢催化加氢过程中添加供氢剂或供氘剂后,生焦反应得到显著抑制,相比之下供氢剂的作用更为明显。三种氢源都具有抑制渣油四组分缩合或缩聚反应的作用。渣油四组分从供氢剂或供氘剂中获得氢(氘)的能力不同,沥青质>胶质>芳香分≈饱和分。就同一组分而言,供氢剂或供氘剂的表观供氢(氘)率随反应条件不同而不同,临氮热裂化> 临氢热裂化>临氢催化加氢过程。供氢剂与供氘剂在所有的过程中都存在明显的动力学效应,并且这个动力学效应随加工环境的不同而变化,在临氮热裂化过程中动力学同位素效应明显。在临氢热裂化过程,尤其是催化加氢裂化过程中动力学效应逐渐变得不明显。2H-NMR分析表明,氘代四氢萘的环烷环中的α位比β位的脱氢选择性高,氘代四氢萘脱氢选择性大小的顺序为:临氮热裂化>临氢热裂化>临氢催化加氢过程。  相似文献   

11.
利用超临界水-合成气为替代加氢氢源对孤岛渣油悬浮床加氢裂化反应进行了研究,设想利用超临界水中发生的水-气转化反应(CO+H2O→H2+CO2)为渣油加氢反应提供氢源,报道了孤岛渣油超临界水-合成气中悬浮床加氢裂化反应催化剂影响的研究结果。结果表明,催化剂在该反应中具有十分重要的作用,加入催化剂可以明显改善加氢裂化产物的分布和裂化反应产物的性质,降低裂化气体和抑制缩合生焦反应的发生。  相似文献   

12.
渣油中沥青质分子颗粒尺寸及其胶粒模型研究   总被引:4,自引:0,他引:4  
分别以苯和硝基苯为溶剂测定了大庆、胜利、孤岛和辽河减压渣油沥青质、胶质和芳香分的分子量;依据球形分子模型计算了这些物质的分子尺寸;构筑了渣油中沥青质胶粒(胶团)模型,并依此计算了渣油中沥青质胶粒尺寸。结果表明,以硝基苯为溶剂所测沥青质分子量更能反应沥青质化学结构的实质;就原始沥青质来说,以苯为溶剂测得的沥青质分子直径为3.8 nm~5.0 nm,以氯代苯为溶剂测得的分子直径为3.2 nm~3.7 nm,以硝基苯为溶剂测得的分子直径为2.8 nm~3.2 nm;辽河、胜利与大庆减压渣油中沥青质的胶粒直径为10.0 nm~11.0 nm,孤岛减压渣油中沥青质的胶粒直径为9.0 nm~10.0 nm。  相似文献   

13.
为了研究替代氢源加氢的有效性,对孤岛渣油以磷钼酸为催化剂,在不同氢源(CO+H2/H2O、CO/H2O、H2/H2O、H2)中悬浮床加氢裂化反应进行了研究。结果表明,超临界水中现场发生的水-气转化反应提供的加氢氢源是一种具有高加氢活性的原子态氢。在适宜的反应条件下,孤岛渣油在超临界水-合成气中的加氢裂化反应过程在抑制生焦、反应产物分布等方面与对应的分子氢存在下孤岛渣油加氢裂化反应结果几乎一致,反应体系中水的存在主要作用是提供水-气转化反应的条件,在没有水-气转化发生的体系中,水的存在对加氢过程有抑制作用,总之、利用现场发生水-气转化反应为加氢提供氢源的孤岛渣油超临界水-合成气中悬浮床催化加氢裂化是一项有效的渣油加氢改质技术。  相似文献   

14.
委内瑞拉常压渣油供氢热转化研究   总被引:1,自引:0,他引:1  
采用高压釜研究了委内瑞拉常压渣油的常规减黏裂化与供氢热转化过程。结果表明,相比常规减黏裂化而言,供氢热转化过程中的供氢剂能够抑制气体产物、沥青质以及焦的形成,后者的气体收率比前者低0.5%~1.2%,生焦率低0.02%~0.98%,残渣油沥青质含量低0.6%~1.3%;在反应温度425℃、反应时间5~20 min条件下,供氢热转化过程的总降黏率、净降黏率变化分别为46.1%~54.8%、10.2%~33.0%;供氢热转化过程的较佳反应条件为425℃、5 min,此条件下供氢热转化生成油斑点实验等级为一级(ASTM D4740),运动黏度(50℃)为185.5 mm2/s,净降黏率为26.4%,满足了船运的基本要求。  相似文献   

15.
钼酸胺催化剂对煤-油共处理反应性的影响   总被引:6,自引:0,他引:6  
用共振搅拌反应器研究了钼酸胺催化剂对煤-油共处理中煤总转化率及产物的影响。研究表明,低温时(390 ℃),催化剂能促进前沥青烯向小分子苯可溶物转化;高温时(480℃),有催化剂时煤的转化率低于无催化剂时煤的转化率,而且在产物中苯可溶物产率与前沥青烯产率全部减少,说明产物发生了缩聚反应。在高温时(390 ℃)随反应时间的延长,煤转化率下降,同时在产物中苯可溶物产率与前沥青烯产率呈下降趋势。反应温度越高,反应时间越长,缩聚越严重。反应体系有供氢溶剂不能抑制缩聚反应。  相似文献   

16.
生物油水溶性组分的水蒸气催化重整制氢实验研究   总被引:4,自引:1,他引:3  
利用固定床反应器对生物油水溶性组分重整制氢反应进行了考察,研究了温度、吸收剂的加入对反应过程的影响。结果表明,在常压条件下生物油水溶性组分的最佳重整温度为800℃,此时H2体积分数为60%、CO体积分数为10%。加入CO2吸收剂后,H2体积分数提高了25%,H2产率提高了10%。在常压条件下,以CaO作为吸收剂时,最佳的反应温度为600℃,此时H2体积分数最高可达85%。650℃时CaO对CO2的吸收能力减弱导致其对生成H2反应的促进作用急剧降低。  相似文献   

17.
以加拿大油砂沥青大于420℃的减压渣油(BVR)为原料,对比研究其在CO/H2-H2O和N2体系中的热改质特性,通过系统分析BVR在H2-H2O、CO-H2O、N2-H2O等不同氢源下的热改质特性以揭示CO/H2-H2O对渣油热改质的作用机制,最后探讨合成气压力、含水量以及温度对BVR临CO/H2-H2O改质生焦倾向的影响。结果表明,与临氮改质相比,相同反应条件下,合成气和水可使BVR热改质的生焦诱导期延长3.5-6.5 min;相同生焦率(约0.1%)时,合成气和水可显著提升BVR热改质降黏率,410℃时相对临氮改质的降黏率为29.1%,而420℃时可达54.6%。比较不同氢源下BVR热改质的生焦诱导期、改质油黏度和安定性、渣油转化率发现,H2-H2O、CO-H2O、N2-H2O等均对BVR热改质表现出与CO/H2-H2O相同的促进效果,各氢源作用活性的大小顺序为H2-H2O > CO/H2-H2O > CO-H2O > N2-H2O。由此可知,CO/H2-H2O对渣油热改质的促进作用可归因于氢气、CO水热变换新生氢和水热裂解的综合效应,且其中氢气的作用仍最显著。合成气压力、含水量和反应温度可通过影响不同氢源的贡献而调控BVR临CO/H2-H2O改质生焦倾向。低成本易获取的合成气可以提供BVR热降黏改质所需氢源,水能够通过CO水热变换反应供出新生活泼氢而协同合成气实现BVR高效改质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号