首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

2.
一种风力机气动计算的全自由涡尾迹模型   总被引:1,自引:0,他引:1  
采用全自由方式建立风力机尾流场的涡尾迹模型,引入“虚拟周期”的概念,并发展一种自适应松弛因子方法,从而改善了自由尾迹迭代的稳定性,提高了迭代收敛速度。利用建立的自由涡尾迹模型,计算了风力机叶片的尾流场结构、气动性能及叶片载荷,并与实验结果进行了对比分析。结果表明,尖速比越大,自适应松弛因子方法对缩小模型计算时间越有效;全自由涡尾迹模型能准确给出风力机尾流场的结构,包括尾迹的扩张以及叶尖涡和叶根涡的产生、发展和耗散的过程,风轮扭矩与实验数据吻合;叶片载荷分布的计算结果在低风速下与实验值基本一致,但是在大风速下差别较大,说明需要一个准确的失速模型。  相似文献   

3.
钝后缘风力机翼型的环量控制研究   总被引:2,自引:0,他引:2  
钝后缘风力机翼型具有结构强度高、对表面污染不敏感等优点,但其较大的阻力系数使得翼型的整体气动特性不够理想. 利用环量控制方法对钝后缘风力机翼型进行了流动控制,以改善钝后缘风力机翼型的气动特性,减弱尾迹区脱体涡强度. 通过对钝后缘风力机翼型环量控制方法进行相关的数值模拟,对比研究了环量控制方法的增升减阻效果, 研究了环量控制下翼型升阻力特性随射流动量系数的变化规律,并对不同射流动量系数下环量控制方法的气动品质因子和控制效率进行了分析. 研究结果表明:环量控制方法能够大幅提升钝后缘风力机翼型的升力系数,同时有效地降低翼型的阻力系数; 翼型的升力系数随射流动量系数的增大而增大,表现出很明显的分离控制阶段和超环量控制阶段的变化规律; 射流能耗的功率系数随射流动量系数的增大而增大,且增长速率逐渐增大;实施环量控制方法后叶片的输出功率同样随射流动量系数增大而增大,但增长速率逐渐降低. 总体来说,环量控制方法可以有效地改善钝后缘风力机翼型的气动特性以及功率输出特性,在大型风力机流动控制中具有很好的应用前景.   相似文献   

4.
Three-dimensional velocity fields were measured using tomographic particle image velocimetry (Tomo-PIV) on a model of the blade of a small-scale horizontal axis wind turbine (HAWT) to study the effects of rotation on separated turbulent flows during stall delay at a global tip speed ratio (TSR) of 3 and a Reynolds number of 4800. The flow fields on a static airfoil were also measured at a similar angle-of-attack (AOA) and Reynolds number for comparison. It was observed that the blade’s rotation in the streamwise direction significantly affected both the mean flow and the turbulence statistics over the suction surface. The mean velocity fields revealed that, different from the airfoil flow at large AOA, the recirculation region with reversed flow did not exist on the suction surface of the blade and the flow was rather attached. Mean spanwise flow from blade’s root to its tip was also generated by the rotation. The mean vorticity vector of the blade flow was found to be tilted in the rotational direction of the blade, as well as in the wall-normal direction. Of particular effects of the rotation on Reynolds stresses were the enhancement of 〈w 2〉 and the creation of strong 〈v w〉. The production of Reynolds stresses was also affected by blade’s rotation directly through the rotational production terms and indirectly by dramatically changing the fluctuating velocity fields. The distribution of enstrophy was observed to be modified by rotation, too.  相似文献   

5.
Large-view flow field measurements using the particle image velocimetry (PIV) technique with high resolution CCD cameras on a rotating 1/8 scale blade model of the NREL UAE phase VI wind turbine are conducted in the engineering-oriented Φ3.2 m wind tunnel.The motivation is to establish the database of the initiation and development of the tip vortex to study the flow structure and mechanism of the wind turbine.The results show that the tip vortex first moves inward for a very short period and then moves out...  相似文献   

6.
Field experiments are performed on a two-bladed 33 kW horizontal-axis wind turbine (HAWT). The pressures are measured with 191 pressure sensors positioned around the surfaces of seven spanwise section airfoils on one of the two blades. Three-dimensional (3D) and two-dimensional (2D) numerical simulations are performed, respectively, on the rotor and the seven airfoils of the blade. The results are compared with the experimental results of the pressure distribution on the seven airfoils and the lift coefficients. The 3D rotational effect on the blade aerodynamic characteristics is then studied with a numerical approach. Finally, some conclusions are drawn as follows. From the tip to the root of the blade, the experimental differential pressure of the blade section airfoil increases at first and then decreases gradually. The calculated 3D result of the pressure distribution on the blade surface is closer to that of the experiment than the 2D result. The 3D rotational effect has a significant impact on the blade surface flow and the aerodynamic load, leading to an increase of the differential pressure on the airfoils and their lift coefficient than that with the 2D one because of the stall delay. The influence of the 3D rotational effect on the wind turbine blade especially takes place on the sections with flow separation.  相似文献   

7.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

8.
The present paper describes the applicability of the active flow control device, mini electromagnetic flap actuators attached on the leading edge of an airfoil, for the flow separation under both the steady and the unsteady flow conditions in the low Reynolds number region. At first, lift and drag have been measured for a wide variety of the wind speed Reynolds numbers and the angles of attack for the steady flow condition. Then, effects of some simple feedback flow controls, where the time-dependent signal of the lift-drag ratio have been used to detect the stall and served as a trigger to start the actuation, have been explored under the unsteady flow condition for evading the stall. In every low Reynolds number ranging from 30 000 to 80 000, the present actuators worked quite well to delay the stall, increasing in the lift and delaying the stall angle of attack. These aerodynamic modifications by the flap actuators obtained from the steady flow were found to be available even if the manipulation of the actuators started after the stall. Activation threshold of the lift-drag ratio as the input for the feedback control was determined from a stall classification map obtained under the steady flow experiment. Effectiveness of this feedback control was then demonstrated under the condition of the wind speed decrease (Reynolds number from 80 000 to 40 000) keeping the angle of attack constant at 11°, at which the stall occurs without the active control. Immediately after the sudden velocity decrease, the decrease in the lift-drag ratio were detected and the dynamic actuations were successfully started, resulting in evading the stall and keeping high and stable lift. An additional operation of the feedback, in which the running actuation is turned off when the lift-drag ratio shows lower than the second threshold value after operation, was revealed to be effective to keep the high lift force under the condition combined with the wind speed increase and decrease within the low Reynolds number range treated in this study.  相似文献   

9.
Digital particle image velocimetry (DPIV) has been used in a wind tunnel study to measure the velocity field of the trailing vortices from the blades of a horizontal axis wind-turbine (HWAT) in yaw. The creation of the trailing vortex circulation is shown to vary as a function of the phase angle of the rotor and the angle of yaw between the wind and turbine rotor. The strength of the convecting vorticity was also shown to vary with time. The initial formation of the vortex is shown determined by the flow expansion angle while in yawed flows the developing vortex is then influenced by the vortex sheet shed from the inboard blade trailing edge. This interaction is shown to significantly affect the roll up of the tip vortex. Received: 17 December 1997/Accepted: 16 June 1999  相似文献   

10.
风力机叶片翼型动态试验技术研究   总被引:9,自引:7,他引:2  
风力机叶片动态振荡过程往往伴随着俯仰和横摆同时进行, 以前对许多动态问题不清楚的阶段, 工程上不惜以增加叶片重量为代价而采用偏安全的设计, 通常忽略横摆振荡的影响; 大型风力机设计对获取翼型更加全面、准确的动态载荷提出了更高要求, 研究横摆振荡对翼型动态气动特性的影响规律具有重要意义. 本文首次开展翼型横摆振荡动态风洞试验研究, 采用“电子凸轮”技术代替机械凸轮实现了振荡频率和振荡角度的无级变化, 基于设计的电子外触发装置实现了对动态流场的实时测量, 实现了风洞来流、模型角位移和动态压力数据的同步采集, 分别开展了翼型静态测压、俯仰/横摆动态测压、粒子图像测速和荧光丝线等试验研究, 试验结果准度较高、规律合理; 分析了动态试验洞壁干扰影响机制. 研究表明, 横摆振荡翼型的气动曲线也存在明显迟滞效应; 随着振荡频率升高, 翼型俯仰和横摆振荡下的气动迟滞性均增强; 翼型俯仰振荡正行程的动态失速涡破裂有所延迟; 洞壁与模型端部交界处的强三维效应对翼型压力分布影响较大; 建立的横摆振荡试验技术可为风力机动态掠效应的研究提供技术支撑.   相似文献   

11.
Aerodynamic noise due to interaction between incoming turbulence and rotating blades is an important component in the wind turbine noise. The rod-airfoil configuration is used to investigate the interactive phenomenon experimentally and numerically. Distribution of unsteady pressure on the airfoil surface is measured for different rod positions and airfoil attack angles. Two National Advisory Committee for Aeronatics (NACA) airfoils, NACA0012 and NACA0018, and two wind turbine airfoils, S809 and S825 are investigated. In addition, for low angles of attack, the flow field around the airfoil's leading edge is investigated with the particle image velocimetry (PIV). The experimental results indicate that unsteady pressure disturbances on the airfoil surface are related to the rod vortex shedding. Meanwhile, the interaction flow field of the rod and NACA0012 airfoil is simulated with the unsteady Reynolds averaged Navier-Stokes method (URANS), and the obtained pressure spectra are compared with the experimental results.  相似文献   

12.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

13.
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors (1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high- performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteoro- logical environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.  相似文献   

14.
风力机气动力学一直是国内外研究的热点课题之一.目前相关研究大都是基于确定性工况条件, 但因风力机常年工作在自然来流复杂环境,风速随机波动致使风电系统呈现不确定性, 对电网稳定性带来巨大挑战,因此进行不确定风速条件下风力机气动力学研究具有重要意义.为揭示不确定性对风力机流场影响机理并明确其对气动力的影响程度,本文提出一种风力机不确定空气动力学分析方法,基于修正叶素动量理论和非嵌入式概率配置点法,建立水平轴风力机不确定性空气动力学响应模型; 以NREL Phase VI S809风力机叶轮为研究对象, 基于该模型提取风力机输出随机响应信息,量化不确定风速对风力机风轮功率、推力、叶片挥舞弯矩和摆振弯矩的影响程度;通过分析流动诱导因子不确定性在叶片展长方向上的分布规律,揭示不确定因素在风力机本体上的传播机制,为风电系统设计及应用提供理论依据和重要参考. 结果表明,风速波动对风力机功率和气动力影响显著,高斯风速标准差由0.05倍增大至0.15倍均值,功率和推力最大波动幅度分别由13.44%和8.00%增大至35.11%和22.02%,叶片挥舞弯矩和摆振弯矩最大波动幅度分别由7.20%和12.84%增大至19.90%和33.49%.来流风速不确定性导致叶片根部位置气流明显波动,可以考虑在该部分采取流动控制措施降低叶片对风速不确定性的敏感程度.   相似文献   

15.
The effect of film cooling on the aerodynamic performance of turbine blades is becoming increasingly important as the gas turbine operating temperature is being increased in order to increase the performance. The current paper investigates the effect of blowing ratio on the aerodynamic losses of a symmetric airfoil by pressure measurements and Particle Image Velocimetry (PIV). The test model features 4 rows of holes located on the suction side at 5%, 10%, 15% and 50% of the chord length. The Reynolds number based on the airfoil chord is 1.2 × 105. Experiments are performed by varying the location of air injection, the angle of attack, and the mainstream velocity. The coolant air is injected at ambient temperature and the blowing ratio is varied from 0 to 1.91. It is observed that the losses due to film cooling increase with blowing ratio of 0 to 0.48, and the wake is shifted towards the suction side. Conversely, the aerodynamic losses decrease when the blowing ratio is increased further from 0.64 to 1.91. This trend has been observed for all the experimental configurations. The effect of blowing ratio on flow separation is investigated with the time-averaged velocity fields obtained from PIV measurements. It is observed that low blowing ratios, the separation point shifts upstream and at high blowing ratios the ejected coolant energizes the flow and delays separation. The pressure field around the airfoil is reconstructed from the integration of the Poisson equation based on the PIV velocity fields. The experimental results can be used for validation of numerical models for predicting losses due to film cooling.  相似文献   

16.
合成射流对失速状态下翼型大分离流动控制的试验研究   总被引:1,自引:0,他引:1  
为研究低速状态合成射流在抑制翼型气流分离和推迟失速方面的控制机理, 开展了NACA0021 翼型失速特性射流控制的风洞试验研究. 通过系统性的模型测力、翼型瞬态流场粒子图像测速和边界层速度测定的对比试验, 深入探索了合成射流各参数对翼型失速特性控制效果的影响规律. 试验结果表明射流偏角在翼型升力和失速迎角控制方面的效果对射流动量系数较为敏感: 当动量系数较大时, 近切向射流的控制效果更好. 射流动量系数为0.033 时, 偏角30°的射流使得翼型升力系数峰值提高23.56%, 失速迎角增大5°; 而动量系数较小时, 偏角较大的射流能够获得最佳控制效果. 射流动量系数为0.0026 时, 法向射流对翼型最大升力系数控制效果最好(提高9.2%).   相似文献   

17.
利用CFD软件对麦克马斯特大学垂直轴风力机进行不同叶尖速比下的数值模拟,计算结果与风洞试验数据吻合良好。近场尾流中,与单叶片的风力机模拟结果比较,上游叶片产生并向下游延伸的旋涡影响下游运行轨道上叶片的升阻力特性,不仅使叶片扭矩输出峰值降低,而且峰值产生的时间延迟。对垂直轴风力机叶片叶梢进行修改,模拟结果显示,叶片扭矩输出峰值不变,但是谷值有所降低,修改后风力机沿风向推力幅值降低明显;远场尾流中,采用风速轮廓线原理,以瑞典的法尔肯贝里市200kW垂直轴风力机为原型,按照真实的空间排布进行数值模拟。模拟结果显示,上游风力机上下两端处产生较为集中的远场尾流,影响下游风力机叶片下半段的气动性能,下游风力机功率输出降低明显。  相似文献   

18.
Research indicates that active control concepts have promise in mitigating numerous adverse phenomena associated with the aeromechanics of lifting surfaces. These techniques are being applied to delay stall of fixed wing aircraft, as well as to eliminate or mitigate vibratory loads, blade–vortex interaction, and dynamic stall of the flow about rotorcraft and wind turbine blades. These phenomena are nonlinear and unsteady for dynamic systems, which add yet another layer of complexity on the physics of the flow. While a plethora of different active control techniques is being explored, the use of trailing edge flaps appears to be one of the more viable and cost-effective concepts. Static multi-element airfoils and wings have been analyzed computationally, but little exists on the ability to model these when the airfoil and flap are dynamic. The costs associated with modeling the gap between the airfoil and flap have led to approximations where the flap is modeled only as a morphed tip of the airfoil (no gap). Using a hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy-Simulation turbulence technique, an oscillating flapped airfoil has been studied to determine the influence of modeling the gap on the performance and acoustic signature of the airfoil. Results are compared with the experimental data to confirm the validity of the computational approach. Both attached and separated (dynamic stall) oscillating flows are examined. The physics within the gap are found to be important for the airfoil performance when stall is encountered, as well as when acoustic signatures are required.  相似文献   

19.
The influence of periodic blade pitching on rotor aerodynamics is numerically investigated at a Reynolds number typical of micro-air vehicles. Blade pitching motion is parameterized using three variables, giving rise to a large parameter space that is explored through 74 test cases. Results show that a relevant tuning of pitching variables can lead to an increase in rotational efficiency and thrust, which is found to be primarily related to the occurrence of reversed von Karman street, leading edge vortex (LEV) formation and dynamic stall phenomenon. In addition, for cases where reversed von Karman street occurs, the flow is found to be quasi-two-dimensional, suggesting that quasi-two-dimensional approaches can provide relevant approximations of the global aerodynamics. Overall, the analysis demonstrates that blade pitching can be beneficial to the aerodynamic performance of micro-air vehicles and helps draw guidelines for further improvements of flapping-rotor concepts.  相似文献   

20.
邓阳平  高正红  詹浩 《实验力学》2009,24(2):103-107
新概念旋转机翼飞机的主机翼既能高速旋转作为旋翼,又可锁定作为固定翼,所以只能使用特殊的前后对称翼型。针对主机翼翼型的这一特殊要求,对16%相对厚度,相对弯度分别为0%和3%的两种椭圆翼型的高速气动特性进行了风洞实验研究,试验分别在中国空气动力研究发展中心FL-21风洞和荷兰代尔夫特大学TST-27风洞进行,采用表面测压和尾排型阻测量技术。试验结果的对比分析表明,有弯度椭圆翼型的升力和力矩特性优于无弯度椭圆翼型,而阻力特性和最大升阻比劣于无弯度椭圆翼型。试验结果为旋转机翼飞机主机翼翼型的选取提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号