首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Xu 《哲学杂志》2013,93(10):1581-1599
Grain boundaries are known to be sources and sinks for bulk vacancies, but the exchange that occurs between the grain boundary and the bulk under a low stress is still obscure. In the present paper, it is shown that grain boundaries may act as sources to emit vacancies when an anelastic deformation occurs under a compressive stress. These emitted supersaturated vacancies are combined with solute atoms to form complexes. Solute non-equilibrium grain-boundary dilution may be induced by the diffusion of complexes away from the boundary. An equation of solute concentration at grain boundary is derived under stress equilibrium during its anelastic relaxation. Furthermore, kinetic equations are also established to describe the non-equilibrium grain-boundary dilution. Additionally, an attempt is made to simulate experimental data to justify the present model.  相似文献   

2.
J. Svoboda  L. Klinger  E. Rabkin 《哲学杂志》2013,93(30):3398-3412
The Kirkendall effect is conditioned by active diffusion as well as by active sources and sinks for vacancies. In the case of grain boundaries under the condition of negligible bulk diffusion, the Kirkendall effect is highly localized and responsible for the formation of an extra material wedge in the grain boundary, which may lead to high stress concentrations. The Kirkendall effect in grain boundaries of a binary system is described by a set of partial differential equations for the mole fraction of one of the diffusing components and for the stress component normal to the grain boundary completed with the respective initial and boundary conditions. The contact conditions of the grain boundary with the surface layer acting as source of one of the diffusing components can be considered as equilibrium ones ensuring the continuity of generalized chemical potentials of both diffusing components. Thus, the boundary conditions are determined by the difference in chemistry (i.e. how the thermodynamic parameters depend on chemical composition) of the grain boundaries and of the surface layer. The simulations based on the present model indicate a drastic influence of the chemistry on the grain boundary interdiffusion and Kirkendall effect.  相似文献   

3.
The structures of a small closed system of grain boundaries and the interactions of vacancies with these boundaries has been investigated using computer simulation techniques based on empirical interatomic potentials. The boundaries chosen are the {;111}; and {;112}; twins in both body centred cubic and face centred cubic metals, the potentials used being matched to the physical properties of iron and copper. Two stable structures arise for the {;112};bcc twin so that effectively five boundaries have been studied. The structures and energies of these are extremely varied, the {;112};fcc twin in particular being very broad. This influences the binding of vacancies to the boundaries and the migration of vacancies along the boundaries. Near the {;111};bcc twin a split-vacancy consisting of a divacancy and an interstitial is the most stable configuration. This has a very high binding energy and an exceptionally high migration energy. Near the other boundaries the vacancy migration energies are less than in the bulk. The implications of the results are discussed.  相似文献   

4.
Afshin Arjhangmehr 《哲学杂志》2013,93(21):1803-1823
Abstract

In this paper, by means of atomic-scale simulations, we investigate modifications of the evolution pattern of collision cascades in bcc vanadium (V) with different grain boundary (GB) structures on picosecond (ps) timescale. In primary damage state, in agreement with previous results of bcc and fcc bi-crystals, we find that the GBs in V are biased towards interstitials. The biased absorption of interstitials over vacancies reduces the in-cascade annihilation of vacancy-interstitial pairs and leads to aggregation of more number of vacancies in the grains interiors. The sessile vacancies accumulate in the bulk and form immobile vacancy clusters; in contrast, the glissile interstitials disperse in the damage zone and mostly diffuse in the form of single self-interstitial atoms (SIAs)/di-interstitials towards the GB region. Moreover, meanwhile, as we discuss the mechanisms that reduce (or increase) the concentration of defects in bi-crystal structures on picosecond timescale, we study the energetics of defects in close vicinity of pristine GBs, as an alternative driving force that facilitates formation and accumulation of defects in the GB regions. Finally, in a prolonged irradiation, we examine stability and sink properties of the damaged GBs. The results reveal that, irrespective of GB structure, the presence of grain boundaries leads to aggregation of more number of vacancies in the grain interiors in continuous bombardment. Overall, based on the results obtained in the primary damage event and the prolonged irradiation, we conclude that the GBs in bcc V act as efficient defect sinks on the simulated time frame.  相似文献   

5.
J. Y. Zhang    K. Wu  J. Sun 《哲学杂志》2013,93(9):613-637
Abstract

Due to their interface and nanoscale effects associated with structural peculiarities of nanostructured, face-centered-cubic (FCC) ultrafine-grained/nanocrystalline (UFG/NC) metals, in particular nanotwinned (NT) metals exhibit unexpected deformation behaviours fundamentally different from their coarse-grained (CG) counterparts. These internal boundaries, including grain boundaries and twin boundaries in UFG/NC metals, strongly interact with dislocations as deformation barriers to enhance the strength and strain rate sensitivity (SRS) of materials on the one hand, and play critical roles in their microstructural evolution as dislocation sources/sinks to sustain plastic deformation on the other. In this work, building on the findings of twin softening and (de)twinning-mediated grain growth/refinement in stretched free-standing NT–Ni foils, a constitutive model based on the thermally activated depinning process of dislocations residing in boundaries has been proposed to predict the steady-state grain size and simulate the plastic flow of NT–Ni, by considering the blocking effects of nanotwins on the absorption of dislocations emitted from boundaries. It is uncovered that the stress ratio (ηstress) of effective-to-internal stress can be taken as a signature to estimate the stability of microstructures during plastic deformation. This model not only reproduces well the plastic flow of the stretched NT–Ni foils as well as reported NT–Cu and the steady-state grain size, but also sheds light on the size-dependent SRS and failure of FCC UFG/NC metals. This theoretical framework offers the opportunity to tune the microstructures in the polycrystalline materials to synthesise high performance engineering materials with high strength and great ductility.  相似文献   

6.
合金元素Zr韧化不同计量比Ni3Al合金的微观机制   总被引:1,自引:0,他引:1       下载免费PDF全文
利用正电子湮没技术(PAT)测量了不同化学计量比二元Ni33Al合金及不同Zr含 量Ni33Al合金的正电子寿命谱,并估算了合金基体和晶界缺陷处的自由电子密度.结果表明,二元Ni7777Al2323合金的基体和缺陷态的自由电子密度都比二元 Ni7474Al2626合金的高. Ni33Al合金晶界缺陷处开空间大于Ni空位或Al空位的开空间,晶界缺 陷处的自 关键词: 3Al合金')" href="#">Ni33Al合金 微观机制 自由电子密度 韧化  相似文献   

7.
Abstract

In the next nearest surface region the vacancy concentration is constant and independent of the irradiation temperature between 750 and 300°C and decreases with increasing electron flux. The conentrations of interstitials and of vacancies in the sink-free bulk of the material are equal and depend on the irradiation temperature, and are almost independent of the irradiation flux. The activation migration energies of vacancies and of interstitials decrease with increasing irradiation flux.It is further shown that the dynamic steady state defect concentrations resulting from the rate equations are artificial concentrations, which will not be achieved in finite times.  相似文献   

8.
Yoed Tsur 《Interface Science》2001,9(3-4):163-167
Grain boundaries in ceramic barium titanate and related materials can be engineered in order to obtain desired transport behavior. Our ability to do so is closely related to kinetic limitations during the preparation. The close-packed structure of perovskites excludes native or foreign interstitials in the bulk. (Interstitial protons are regarded as OHO , using the Kröger-Vink notation). Antisites are also unlikely due to size, charge and coordination number mismatch. The possible point defects are, therefore, substitutionals and vacancies. The kinetic limitations of these species, and the results in terms of grain boundary engineering, are considered in this contribution.A clear distinction between three different conditions is made. At very high temperatures, it is assumed that all the relevant defects are mobile and can equilibrate, at least locally. Hence, their concentrations are all functions of the degrees of freedom of the system. At lower temperatures, the cation sublattice is frozen. Therefore, the concentrations of metal vacancies and substitutional cations are constants and, from local electrical neutrality point of view, a new parameter becomes important: the concentration of frozen charge. The concentrations of electronic defects and oxygen vacancies in this metastable state are functions of temperature, oxygen partial pressure and frozen charge. The normalized concentration of frozen metal vacancies is calculated as a function of the doping factor, f (defined as the ratio between the electron concentration at a given state and at a reference state), and a nonstoichiometry parameter. Around room temperature, the anion sublattice is also frozen, and only electrons and holes exhibit significant transport properties.  相似文献   

9.
Abstract

Molecular dynamics simulations have been performed to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 9.0 and 24 nm. A melting–cooling method has been used to generate the initial samples: this method produces realistic samples that contain defects inside the grains such as dislocations and vacancies. The results of uniaxial tensile tests applied to these samples reveal the presence of a critical mean grain size between 16 and 20 nm, for which there is an inversion of the conventional Hall–Petch relation. The principal mechanisms of deformation present in the samples correspond to a combination of dislocations and grain boundary sliding. In addition, this analysis shows the presence of sliding planes generated by the motion of perfect edge dislocations that are absorbed by grain boundaries. It is the initial defects present inside the grains that lead to this mechanism of deformation. An analysis of the atomic configurations further shows that nucleation and propagation of cracks are localised on the grain boundaries especially on the triple grains junctions.  相似文献   

10.
《Solid State Ionics》2006,177(35-36):3093-3098
The electronic conductivity as well as the chemical diffusion coefficient of barium titanate ceramics doped with Y and Mn (donor-doped and acceptor co-doped) have been determined by application of conductivity relaxation experiments. The equilibrium values of the electronic conductivity of n-conducting BaTiO3 have been analyzed by application of a defect chemical model involving electrons and cation vacancies as the predominant defect species at oxidizing conditions (fairly high oxygen partial pressures). The relaxation curves of the electronic conductivity yield the chemical diffusion coefficient of the bulk by employing a spherical grain model where the appropriate diffusion length is the radius of grains (average grain size). The conductivity relaxation experiments have been performed as a function of temperature ranging from 1100 to 1250 °C at oxygen partial pressures between 0.01 and 1 bar. The kinetics of the oxygen exchange process can be interpreted in terms of extremely fast diffusion of oxygen via oxygen vacancies along the grain boundaries and slow diffusion of Ti (cation)-vacancies from the grain boundaries into the grains. The Ti-vacancy diffusion coefficients were extracted from the chemical diffusion coefficients as a function of temperature. Typical values for the Ti-vacancy diffusivity are around 10 15 cm2 s 1 with an activation energy of 3.9 ± 0.7 eV.  相似文献   

11.
ABSTRACT

Grain boundaries of metallic materials subjected to severe plastic deformation exhibit significantly enhanced diffusivity and excess energy compared with their relaxed poly- or bi-crystalline counterparts even when the macroscopic degrees of freedom are the same in both types of grain boundaries. Boundaries of excess energy are/can be relaxed by annealing. As a first step in accounting for this experimentally observed high-energy state of general high-angle grain boundaries subjected to severe plastic deformation, a concept of localised basic shear units and the presence of localised extra free volume in these units situated in different locations in the grain boundaries, which was originally proposed to explain steady-state structural superplastic flow, is made use of. Using MD simulation, the mechanical response of these modified grain boundaries is compared with that of their relaxed state. The results are also compared with a case of a homogeneous distribution of extra free volume within the grain boundary. The localised shear units containing extra free volume introduced in the grain boundaries are found to alter their physical and mechanical features strongly, which, in turn, drastically affect, consistent with experimental results, the mechanical response of the heavily deformed material.  相似文献   

12.
The effect of decrease in the strength of submicron-sized specimens of face-centered cubic (fcc) metals with a nanocrystalline structure and a cross-sectional size D < 5d, as compared to the strength of the specimens with D ? 5d (where d is the grain size), has been considered theoretically on the basis of the dislocation–kinetic equations and relationships. Previously, it has been found that this decrease is caused by the escape of a part of the dislocations through the surface of the specimen under the action of single-pole dislocation sources in grains adjacent to the surface. In this study, it has been shown that the absorption of lattice dislocations by grain boundaries and its accompanying grain boundary sliding lead to a further decrease in the flow stress of specimens, which is equally related to both thin (D < 5d) and thick (D ? 5d) specimens.  相似文献   

13.
Field-ion microscopy is used to study changes in the structure of the grain boundaries induced by intergrain adsorption of point defects created by ion bombardment of tungsten bicrystals. It is found that irradiation at temperatures below the threshold of grain-boundary relaxation causes a local expansion of the boundaries. Computer simulation using molecular dynamics shows that intergrain adsorption of vacancies can lead to the formation of three-dimensional grain-boundary structures. Fiz. Tverd. Tela (St. Petersburg) 41, 383–385 (March 1999)  相似文献   

14.
Sho Kujirai 《哲学杂志》2020,100(16):2106-2127
ABSTRACT

The mechanical properties of metals used as structural materials are significantly affected by hot (or warm) plastic working. Therefore, it is industrially important to predict the microscopic behaviour of materials in the deformation process during heat treatment. In this process, a number of nuclei are generated in the vicinity of grain boundaries owing to thermal fluctuation or the coalescence of subgrains, and dynamic recrystallisation (DRX) occurs along with the deformation. In this paper, we develop a DRX model by coupling a dislocation-based crystal plasticity model and a multi-phase-field (MPF) model through the dislocation density. Then, the temperature dependence of the hardening tendency in the recrystallisation process is introduced into the DRX model. A multiphysics simulation for pure Ni is conducted, and then the validity of the DRX model is investigated by comparing the numerical results of microstructure formation and the nominal stress–strain curve during DRX with experimental results. The obtained results indicate that in the process of DRX, nucleation and grain growth occur mainly around grain boundaries with high dislocation density. As deformation progresses, new dislocations pile up and subsequent nucleation occurs in the recrystallised grains. The influence of such microstructural evolution appears as oscillation in the stress–strain curve. From the stress–strain curves, the temperature dependence in DRX is observed mainly in terms of the yield stress, the hardening ratio, and the change in the hardening tendency after nucleation occurs.  相似文献   

15.
The defect chemistry of charged grain boundaries in an acceptor-doped oxide in equilibrium with water vapour is examined theoretically. The basis of the theoretical approach is that the formation of charged grain boundaries and attendant space-charge zones is governed by differences in the standard chemical potentials of oxygen vacancies and hydroxide ions between bulk and grain-boundary core, that is, by the thermodynamic driving energies for defect redistribution. A one-dimensional continuum treatment is used to predict the space-charge potential and defect concentrations in the grain-boundary core as a function of water partial pressure, temperature and acceptor dopant concentration for various values of the two thermodynamic driving energies. The results are discussed with respect to experimental data in the literature for acceptor-doped perovskite oxides (e.g. BaZrO3) and fluorite oxides (e.g. CeO2).  相似文献   

16.
Regarding that the excess volume in grain boundaries (GBs) is released as the vacancies which are accommodated by the crystal bulk during grain growth, a free-energy function for binary nanocrystalline solid solution is proposed, based on the pairwise nearest-neighbor interactions. The model, for the given composition and temperature, predicts an equilibrium grain size, subjected to a mixed effect due to solute segregation and due to excess vacancies. Furthermore, excess-vacancy-inhibited grain coarsening can be attained, which plays a minor role in holding the thermal stability of nanocrystalline alloys, as compared to the effect of solute segregation.  相似文献   

17.
A new method, which has been developed to examine the structure and physical properties of cores of grain boundaries (GB's) (S.M. Klotsman, Sov. Phys. Uspech. 33, 55 (1990); V.N. Kaigorodov and S.M. Klotsman, Phys. Rev. B 49 (1994)), was used to study segregats localized in two discrete regions of polycrystals: cores of GB's and two-dimensional regions of the lattice adjacent to the GB's. This paper reports and discusses results of investigations of segregation of 57Co atomic probes in cores of GB's in the d-transition metals Cr, Ta and W. The interaction of 57Co AP's with GB's cores in metals is similar to their interaction with vacancies, because GB's cores are characterized, as vacancies in metals, by an excess volume and a negative charge. GB's are enriched with 57Co in chromium and tungsten. The activation enthalpy of the 57Co atomic probes segregation at GB's in Cr and W is proportional tothe local magnetic moment of 57Co atomic probes. GB's cores are found to be depleted of 57Co atomic probes in Ta.  相似文献   

18.
 在6 GPa压力、1 000 ℃温度条件下制备了致密的纳米BaTiO3陶瓷,合成样品的平均晶粒尺寸为50 nm,理论密度在97%以上。通过介电测量,观察到了样品宽化的相变峰,它与粗晶陶瓷的相变峰大不相同。由于90°电畴的减少和退极化场的存在,观察到了细长的电滞回线,它是样品铁电性存在的有力证据,表明钛酸钡陶瓷的临界尺寸在50 nm以下。  相似文献   

19.

The evolution equations for grain growth and coarsening have been derived in the open literature mainly based on phenomenological considerations. Applying a thermodynamic extremal principle, the evolution equations are derived in a rigorous way. All kinetic parameters are provided directly. Existing relations are proved and generalized.  相似文献   

20.
The direct consequence of irradiation on a material is the creation of point defects-typically interstitials and vacancies, and their aggregates-but it is the ultimate fate of these defects that determines the material's radiation tolerance. Thus, understanding how defects migrate and interact with sinks, such as grain boundaries, is crucial for predicting the evolution of the material. We examine defect properties in two polymorphs of TiO(2)-rutile and anatase-to determine how these materials might respond differently to irradiation. Using molecular statics and temperature accelerated dynamics, we focus on two issues: how point defects interact with a representative grain boundary and how they migrate in the bulk phase. We find that grain boundaries in both polymorphs are strong sinks for all point defects, though somewhat stronger in rutile than anatase. Further, the defect kinetics are very different in the two polymorphs, with interstitial species diffusing quickly in rutile while oxygen defects-both interstitials and vacancies-are fast diffusers in anatase. These results allow us to speculate on how grain boundaries will modify the radiation tolerance of these materials. In particular, grain boundaries in rutile will lead to a space charge layer at the boundary and a vacancy-rich damage structure, while in anatase the damage structure would likely be more stoichiometric, but with larger defects consisting primarily of Ti ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号