首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report measurements of the specific heatC p(T), electrical resistivity ϱ(T) and magnetic susceptibility ξ(T) of hexagonal CePd2In, at low temperatures. Anomalies inC p(T), χ(T) and ϱ(T) atT=1.23 K, indicate a phase transition, most likely to an antiferromagnetically-ordered phase. The electronic entropy reachesR ln2 per mole Ce at 9.2K, suggesting that the phase transition involves a doublet state. The ordered phase coexists with moderately correlated itinerant electrons.  相似文献   

2.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

3.
We report on measurements of a mode-locking resonance in amorphous MoxGe1?x films at different temperatures T down to 0.8 K, which is well below the superconducting transition (6 K). We observe dynamic ordering of driven vortex matter for all the temperatures studied. As the field exceeds a certain critical field Bc,dyn at fixed T, moving vortices do not exhibit dynamic ordering. At high T, this field Bc,dyn(T), so-called dynamic melting, nearly coincides with a characteristic field Bc(T) where the linear resistivity vanishes. At low T, however, Bc,dyn(T) is significantly suppressed compared to Bc(T), suggesting intrinsic quantum melting in the absence of pinning.  相似文献   

4.
Summary In the present review of liquid dynamics studies on liquid metals are reported. Particularly the case of liquid lead is reviewed because this case was carefully studied by neutron scattering technique,S(Q,ω) being determined at two widely different temperaturesT=623 K andT=1170 K and therefore different densities. In addition extensive supplementary MD simulations were made using a 16 384-particle system. The simulations ranged from a determination of an effective pair potential for lead to simulation of the density correlation functionsF(Q,t) andF s(Q,t), as well as the longitudinal and transversal current correlation functionsJ 1(Q,t) andJ T(Q,t). The MD simulation ?calibrated? via the experimentalS(Q) andS(Q,ω) was used to prolong the range of neutron data to draw conclusions regarding such quantities as dispersion relations for the current correlationsJ 1(Q,t) andJ T(Q,t), the generalized viscosity functions ν1(Q,t), ν1(Q) and νs(Q). Information regarding bulk viscosity νB(Q) is also gained. Conclusions are drawn regarding the relative importance of the derived pair potential form by comparison to corresponding hard-sphere data. The general framework of linearized hydrodynamic equations for the macroscopic situation transforming to visco-elastic equations of motion for finite wave-length and high frequency works well also for the case of a continuous potential. The region of transition from simple visco-elastic to hydrodynamic behaviour is occurring at wavelengths in the range (12÷20) ? for the cases studied. The spatial properties of the viscosity functions ν1(r), νs(r) and νB(r) are found to correlate well with the range of the radial distribution function for the liquid. The general results for liquid lead probably have wide range of applicability to other simple liquids with similarS(Q) andg(r) properties. The authors have agreed not to receive proofs for correction.  相似文献   

5.
Electrical conductivity σ(T) of the paper consisting of multiwalled carbon nanotubes (MWCNTs) is studied in the temperature range 4.2-295 K, and its magnetoresistivity ρ(B) at various temperatures in magnetic fields up to 9 T is analyzed. The temperature dependence of the paper electrical conductivity σ(T) exhibits two-dimensional quantum corrections to the conductivity below 10 K. The dependences of negative magnetoresistivity ρ(B) measured at various temperatures are used to estimate the wavefunction phase breakdown length L φ of conduction electrons and to obtain the temperature dependence L φ = constT ?p/2, where p ≈ 1/3. Similar dependences of electrical conductivity σ(T), magnetoresistivity ρ(B), and phase breakdown length L φ(T) are detected for the initial MWCNTs used to prepare the paper.  相似文献   

6.
Ryszard Wawryk 《哲学杂志》2013,93(12):1775-1787
The thermoelectric power, S(T), of USb2 and UBi2, which are tetragonal, uniaxial antiferromagnets below T N?=?202?K and 180.8?K, respectively, have been examined between 0.4?K and 300?K. The values of S(T), up to now known above 70?K for USb2 and unknown for UBi2, are positive along the a-axis for both compounds in the whole examined temperature range. The S(T) data for the c-axis (the easy magnetization axis) are positive near room temperature for USb2 and UBi2 but becomes negative below 120?K and 170?K, respectively, with two very deep minima in S(T) dependence for USb2. In the latter compound the Fermi surface, known from literature, is composed of the only cylindrical sheets that are slightly corrugated and parallel to the c-axis. UBi2, the Fermi surface of which is composed of one spherical and two cylindrical sheets, shows corresponding minima although less pronounced than those in USb2. Having at disposal the highest purity single crystals in comparison to those for which the resistivity, ρ(T), has been reported in literature, the ρ(T) anisotropy was re-examined for these two systems. Magnon and phonon contributions to their total electrical resistivity have been determined and the critical fluctuation behaviour of the resistivity near T N for both dipnictides has been analysed. Although the magnetic susceptibilities of UBi2 and USb2 reveal a similarity, their transport properties are significantly different due to the difference in the Fermi surface topology.  相似文献   

7.
We report a study of the temperature dependence, down to 30 mK, of the magnetoresistance of Cd-Sb alloy in the insulating phase obtained by annealing the quenched metallic superconducting ( T c ≈4.5 K) phase of the alloy. Even though the sample in this state is no longer superconducting, the observed negative magnetoresistance points to single-particle tunneling in the presence of a superconducting gap in the spectrum. At magnetic fields B<T the ratio α(T,B)=R(T,B)/R(T,B=4 T)is found to be maximum at a temperature of about 0.1 K. This behavior indicates a change of the conductivity mechanism from single-particle tunneling to incoherent two-particle tunneling as the temperature decreases. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 10, 713–718 (25 November 1996) Published in English in the original Russian Journal. Edited by Steve Torstveit.  相似文献   

8.
The temperature and magnetic-field dependences of the resistivity ρ and Hall effect R(jab, Bc) in a Nd1.82Ce0.18CuO4−δ single crystal film (T c =6 K) is investigated at temperatures 1.4≤T≤20 K and magnetic fields 0≤B≤5.5 T. At the lowest temperature T=1.4 K the resistive state (exhibiting resistivity and the Hall effect) arises in a magnetic field B=0.5 T. A transition to the normal state is completed at B c 2≃3 T, where the Hall coefficient becomes nearly constant. The negative magnetoresistance due to the weak-localization effect in the normal state is observed for B>3 T. The nonmonotonic behavior and the inversion of the sign of R(B) in the mixed state are explained in a reasonable way by the flux-flow model with the effect of pinning taken into account. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 6, 407–411 (25 September 1996) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

9.
Magnetic field (0–4 T) and temperature dependencies (4.2–320 K) of the electrical resistance of Gd5(Si1.5Ge2.5), which undergoes a reversible first-order ferromagnetic↔paramagnetic phase transition, have been measured. The electrical resistance of Gd5(Si1.5Ge2.5) indicates that the magnetic phase transition can be induced by both temperature and magnetic field. The temperature dependence of the electrical resistance, R(T), for heating at low temperatures in the zero magnetic field has the usual metallic character, but at a critical temperature of Tcr=216 K the resistance shows a 20% negative discontinuity due to the transition from the low-temperature high-resistance state to the high-temperature low-resistance state. The R(T) dependence for cooling shows a similar but positive 25% discontinuity at 198 K. The isothermal magnetic field dependence of the electrical resistance from 212T224 K indicates the presence of temperature-dependent critical magnetic fields which can reversibly transform the paramagnetic phase into the ferromagnetic phase and vice versa. The critical magnetic fields diagram determined from the isothermal magnetic field dependencies of the electrical resistance of Gd5(Si1.5Ge2.5) shows that the FM↔PM transition in zero magnetic field on cooling and heating occurs at 206 and 213 K, respectively. The full isothermal magnetic filed hysteresis for the FM↔PM transition is 2 T, and the isofield temperature gap between critical magnetic fields is 7 K.  相似文献   

10.
For the high-T c superconductor La1.85Sr0.15CuO4, we present results for the low-field magnetization and the lower and upper critical fieldsB c1 (T) andB c2(T). ForB c1 (0) we find a value of about 20 mT. Extrapolating our resistive data for the transition midpoint taken in fields up to 12 T, we deduce a value of about 50 T forB c2 (0). TheB c2 values obtained by inductive measurements are significantly lower. We explain this by a largeB c2 anisotropy due to the layered structure of these compounds. Losses in the Meissner state observed in magnetization and susceptibility measurements disappear after powdering the sample. This is taken as strong evidence for intergrain Josephson coupling in the bulk sample.  相似文献   

11.
High precision measurements of the thermal expansion coefficient, (T), of the Kondo lattice systems CeAl2 and CeB6 reveal the coexistence of two second-order phase transitions at the Néel temperaturesT N =3.9 K and 2.35 K, respectively. These results are discussed with regard to the complex antiferromagnetic order known from neutron diffraction experiments on both compounds. For CeIn3, a Kondo lattice with simpler magnetic structure, only one discontinuity in (T) occurs atT N 10 K.Dedicated to B. Mühlschlegel on the occasion of his 60th birthday  相似文献   

12.
Abstract

The onset critical temperature T co, of CaLaBaCu3O7, is measured as a function of pressure by means of a cryogenic diamond anvil cell. We find ?T co/?p = 0.14 ± 0.02K/GPa. The pressure dependence of the upper critical field B c2 as a function of pressure is determined for T/Tc , = 0.96. From this we found the corresponding volume dependence of the number of charge carriers to be much smaller than the value derived from Hall effect measurements in YBa2Cu3O7.

Les dérivées par rapport à la pression de la température critique supérieure Tco , (avec ?T co,??p = 0.14 ± 0.02K/GPa) et du champs critique B c2 à T/Tc , = 0.96 ont été déterminé á l'aide d'une presse à diamants. Pour le composé CaLaBaCu3O7, la variation de la densité de charges en fonction du volume est beaucoup plus faible que celle détermiée par effet Hall dans YBa2Cu3O7.  相似文献   

13.

The heat capacity (C P), the thermal diffusion (η), the thermal conductivity (κ), and the electrical resistance of the La0.825Sr0.175MnO3 single crystal have been measured in the temperature range 80–350 K in magnetic fields to 40 kOe. Dependences C P(T), κ(T), and η(T) have anomalies near T C, which are suppressed in magnetic field. The minima in dependences κ(T) and η(T) near T C are explained by the phonon scattering on fluctuations of the magnetic order parameter. Dependences κ(T) and η(T) have anomalies near T S = 200 K related to the structural transition from the rhombohedral (R) to the orthorhombic (O*) phase.

  相似文献   

14.
The galvanomagnetic properties of single-crystal samples with various isotopic boron compositions have been investigated for the first time for the normal state of superconductor LuB12 (T c ≈ 0.44 K). Precision measurements of the resistivity, Hall coefficient, and magnetic susceptibility have been performed over a wide temperature range of 2–300 K in magnetic fields up to 80 kOe. A change of the charge transport regime in this nonmagnetic compound with metallic conduction is shown to occur near T* ≈ 50−70 K. As a result, a sharp peak with significantly different amplitudes for Lu10B12 and Lu11B12 is recorded in the temperature dependences of the Hall coefficient R H(T) near T*. A significant (about 10%) difference (in absolute value) of the Hall coefficients R H for the Lu10B12 and Lu11B12 compounds at helium and intermediate temperatures has been found and the patterns of behavior of the dependence R H(H) for T < T* in an external magnetic field H ≤ 80 kOe for Lu10B12 and Lu11B12 are shown to differ significantly. Analysis of the Curie-Weiss contribution to the magnetic susceptibility χ(T) leads to the conclusion about the formation of magnetic moments μeff ≈ (0.13−0.19)μB in each unit cell of the fcc structure of LuB12 compounds with various isotopic compositions. The possibility of the realization of an electronic topological 2.5-order transition near T* and the influence of correlation effects in the 5d-band on the formation of a spin polarization near the rare-earth ions in LuB12 is discussed.  相似文献   

15.
We have investigated the EPR spectral lines of the photo-excited triplet state of pyrene-d-10 both in a fluorene single crystal and an ethanol glass matrix. In the crystal we have measured the width, shape and saturation parameters, λ′, a and B 1/2 u , of the ΔM = 1 lines from both sites in the cleavage plane, Y-Z, at 193 K and along the principal directions, X, Y, Z, between 143 K and 300 K. In the glass the same parameters have been measured for the six resonances of the absorption derivative at 77 K. We have used a general deconvolution procedure to extract the unresolved inhomogeneous and homogeneous broadenings, ΔB G and ΔB L ≡ 1/γT 2, and the spin-lattice relaxation rate, T 1 -1, from λ′, a and B 1/2 u for the different types of resonances. The use of Fourier-series expansions permits optimal utilization of the data and resolution of the terms of different symmetries for these quantities. The application of the method of moments, using assumed spin densities, permits the demonstration that the main contribution to the constant term of ΔB G, but only a small part of its anisotropy, originates from the intramolecular hyperfine interactions. As T 2 and T 1 are of the same order of magnitude, we have assumed the same mechanism, i.e. modulation of the fine-structure tensor D, for both relaxation effects. A first-order semi-classical treatment leads to partial agreement between the main features of the calculated and observed orientation dependences if one assumes strongly anisotropic librations coupled to large modulations of D. This is consistent with the maximal libration amplitudes estimated from the differences between the D tensors measured in the crystal and in the glass. Variations with temperature are attributed to a competition between the increase of modulation amplitudes and decrease of correlation time with heating.  相似文献   

16.
A superconducting transition in the temperature dependence of the ab-plane resistivity of underdoped YBa2Cu3O6+x crystals in the range T c≲30 K has been investigated. Unlike the case of samples with the optimal level of doping, the transition width increased insignificantly with magnetic field, and in the range T≲13 K it decreased with increasing magnetic field. The transition point T c(B) was determined by analyzing the fluctuation conductivity. The curves of B c2(T) measured in the region T/T c≳0.1 did not show a tendency to saturation and had a positive second derivative everywhere, including the immediate neighborhood of T c. The only difference among the curves of B c2(T) for different crystal states is the scales of Tand B, so they can be described in terms of a universal function, which fairly closely follows Alexandrov’s model of boson superconductivity. Zh. éksp. Teor. Fiz. 115, 268–284 (January 1999)  相似文献   

17.
Measurements of the basal-plane resistivity ρ a(T,H) performed on highly oriented pyrolitic graphite, with magnetic field Hc-axis in the temperature interval 2–300K and fields up to 8 T, provide evidence for the occurrence of both field-induced and zero-field superconducting instabilities. Additionally, magnetization M(T,H) measurements suggest the occurrence of Fermi surface instabilities which compete with the superconducting correlations. Fiz. Tverd. Tela (St. Petersburg) 41, 2135–2138 (December 1999)  相似文献   

18.
In connection with the problem of identifying magnetic states in the vicinity of x 0 (the multicritical point of the x-T diagrams of spin-glass systems) a study has been made of properties that can be exploited to determine the presence of a thermodynamic phase transition at the Curie point T C and the distinctive features of the transition, specifically, the temperature dependence of the magnetic part of the specific heat C m(T), the temperature dependence of the low-field magnetization σ H(T), and (with a view toward examining critical behavior in a magnetic field) the magnetization isotherms σ H(T). The investigated object is the system of dilute ferrimagnetic spinels Li0.5Fe2.5−x GaxO4, in which every type of magnetic state has spatially inhomogeneous cluster structures. The results obtained for a sample with x=1.45 indicate that the classical criteria of a ferrimagnetic second-order phase transition at T C=(97±2) K occur for xx 0. The results of similar investigations for a sample with x=1.6, which exists in the cluster spin-glass state for T<T f=22 K and in an uncorrelated cluster state of the superparamagnetic type for T>T f, are also given for comparison with the preceding case. Zh. éksp. Teor. Fiz. 114, 2065–2077 (December 1998)  相似文献   

19.
Zero-field μSR studies of some hexagonal intermetallic compounds are described. Our LaNI5 data provide information on the muon localisation site. This site could be one of the deuterium sites deduced from neutron diffraction. A comparison of the temperature dependence of the exponential damping rate, λ(T), of our samples shows that λ(T) is strongly influenced by crystal field effects. The TbNi5 spectra exhibit two components forT<60 K. We discuss the possible explanations of this result. We see a μSR signal below the magnetic phase transition in GdNi5. This makes the study of the spin-lattice relaxation rate possible in the ordered magnetic state.  相似文献   

20.
The temperature dependences of the magnetic susceptibility χ(T) and the electrical resistivity ρ(T) of ceramic samples of La1 − x Ca x MnO3 with x = 0.67 (LCMO) and La1 − x Ca x Mn1 − y Fe y O3 with x = 0.67 and y = 0.05 (LCMFO) are investigated in magnetic fields B = 50–105 G and the temperature range T = 4.2–400 K. Both samples undergo a transition from the paramagnetic state to a state with charge (orbital) ordering (CO) at temperatures T CO ≈ 272 K for LCMO and T CO ≈ 222 K for LCMFO. The behavior of the paramagnetic phase in the temperature range 320–400 K for LCMO and 260–400 K for LCMFO is described by the Curie-Weiss law with effective Bohr magneton numbers p eff = 4.83 μB (LCMO) and 4.77 μB (LCMFO), respectively. The disagreement between the observed positive Weiss temperatures (θ ≈ 175 K (LCMO) and θ ≈ 134 K (LCMFO)) and negative Weiss temperatures required for the antiferromagnetic ground state can be explained by the phase separation and transition to the charge-ordered state. The magnetic irreversibility for T < T CO is accounted for by the existence of a mixture of the ferromagnetic and antiferromagnetic phases, as well as the cluster glass phase. At low temperatures, doping with iron enhances the frustration of the system, which manifests itself in a more regular behavior of the decay rate of the remanent magnetization with time. The temperature dependence of the electrical resistivity in the range of the charge-ordered phase conforms to the variable-range hopping model. The behavior of the electrical resistivity is governed by the complex structure of the density of localized states near the Fermi level, which includes a soft Coulomb gap Δ = 0.464 eV for LCMO and 0.446 eV for LCMFO. It is established that the ratio between the localization radii of charge carriers a for LCMFO and a und for LCMO is a/a und = 0.88. Original Russian Text ? V.S. Zakhvalinskiĭ, R. Laiho, T.S. Orlova, A.V. Khokhulin, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 1, pp. 61–68.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号