首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W. Liu  U. Köster 《Phase Transitions》2013,86(1-3):151-162
Continuous transformation of icosahedral quasicrystals as observed in Al-Cu-Fe alloys proceeds through intermediate modulated structures towards rational approximants with a rhombohedral structure. Corresponding to the diffuse scattering in the electron diffraction during the transformation, a tweed contrast emerges throughout the icosahedral phase matrix. High-resolution electron microscopy reveals a complex modulated structure which tends to evolve into rhombohedral microdomains. The observed distortion of the reciprocal quasilattice due to the structural modulation has been simulated on a computer by introducing linear phason strains into the quasicrystals.  相似文献   

2.
New results of dilatometric experiments with rapidly quenched Al-Cu-Fe quasicrystalline alloys in the course of their thermal annealing are presented. It is established that the icosahedral (I) phases with different types of carriers exhibit different signs of volume changes with ordering. The observed effect is a direct experimental proof of the fact that structural defects in icosahedral quasicrystals are electrically active centers.  相似文献   

3.
We report on grain growth and related structure change in single phased Al-Li-Cu quasicrystals. The icosahedral phase grains have been investigated using scanning ion microscopy and transmission electron microscopy. Regular boundaries between large grains have been observed both before and after high temperature annealing. The electron diffraction study shows that the grain growth is accompanied by a reduction of the phason-strains. The orientation relation between grains sets the 2-fold icosahedral axes parallel, and the coincidence of the planes depends on the phason strain-field. The effect of phason-strain field on these boundaries is discussed. It is proposed that the phason strain elimination can play a role in the grain growth. Received 1 February 1999 and Received in final form 12 May 1999  相似文献   

4.
Very sharp Bragg reflections accompanied by diffuse scattering phenomena are typical for most stable quasicrystals. The correlation length of the quasiperiodic average structure can reach several micrometers as proved by high-resolution X-ray diffraction experiments. This corresponds to a structural perfection of some quasicrystals similar to that of silicon. Nevertheless, the omnipresent diffuse scattering indicates significant deviations from a strictly ordered quasiperiodic structure especially in the case of decagonal phases. These structural deviations may be caused by phason fluctuations, by disorder in the packing of the basic atomic clusters, by the formation of nanodomains, by chemical disorder, or by superstructure formation on a short-range scale. Characteristic examples of different types of structural disorder present in icosahedral and decagonal quasicrystals are reported. The diffuse scattering phenomena in decagonal Al-Co-Ni as a function of composition and temperature are discussed in more detail.  相似文献   

5.
We present results on computer generated random cluster models for icosahedral phase alloys. By the application of physically motivated constraints on the local atomic cluster configurations, the model achieves long range translational order comparable to, or greater than, that found in simple icosahedral alloys such asi-AlMnSi andi-AlLiCu. The parallel and perpendicular space structures are explored in some detail including a comparison with experimental powder diffraction patterns and an examination of the phason fluctuations. The latter are shown to decrease markedly with increased constraint on the local environment, but the remaining phason strain would seem finally not to vanish with increasing model size. Our model is compared with other cluster models for quasicrystalline materials and is shown to possess a density and connectivity very close to those of Elser's (best) model and those predicted by Henley for a canonical tiling. The relation of this model to recently discovered icosahedral phase alloys with resolution limited diffraction peak widths, which are essentially free of phason strain, is also discussed.  相似文献   

6.
In order to better understand the long-range propagation of quasicrystalline order, as well as quasicrystal stability, it is important to know if defects are generated in the quasicrystal grains during their growth. Previously, we studied the degree of perfection of about ten icosahedral quasicrystal grains of various alloys (Al–Pd–Mn, Al–Cu–Fe, Zn–Mg–Y), as grown or annealed, and we disclosed that some of them were much more perfect than the others. In this work we have concentrated on another slice of such a grain of the Al–Pd–Mn alloy. Similarly, we have performed an extensive synchrotron X-ray topographic investigation of strain and defects in this grain, combined with phase-contrast radiography and high resolution X-ray diffraction examinations. Very few two-lobe contrasts associated with pores and no loop-shaped contrasts were observed on the X-ray topographs, but straight line segments and band contrasts have been identified. Line segments could be considered as the result of the climbing of polygonal dislocation loops, as observed by TEM by Caillard and coworkers. This would indicate that most strains and defects observed in quasicrystal grains, at room temperature, are the result of stresses (external and internal) acting after growth.  相似文献   

7.
Al-Cu-Fe thin films were prepared by laser induced arc (laser-arc) method from a single source-Al63Cu25Fe12 alloy, which was proved to consist of quasicrystalline phase together with approximant phase. The composition of the deposited films meets the requirement for formation of icosahedral symmetry phase. Quasicrystalline phase was obtained after annealing the amorphous as-deposit film samples. The optical properties of the samples were investigated. Thin film samples of Al, Cu and Fe deposited under the same condition were employed for comparison. The results showed specific reflective properties of Al-Cu-Fe quasicrystal thin film in some wavelength range. The optical conductivity of the films exhibited a negative peak, centered about 440 nm in range of 190to 800 nm. The Al-Cu-Fe quasicrystal thin films could absorb almost all the ray in the wavelength range from 420nm to 450 nm. The ratio of absorption was greater than 99%.  相似文献   

8.
Al-Cu-Fe thin films were prepared by laser induced arc (laser-arc) method from a single source—Al63Cu25Fe12 alloy, which was proved to consist of quasicrystalline phase together with approximant phase. The composition of the deposited films meets the requirement for formation of icosahedral symmetry phase. Quasicrystalline phase was obtained after annealing the amorphous as-deposit film samples. The optical properties of the samples were investigated. Thin film samples of Al, Cu and Fe deposited under the same condition were employed for comparison. The results showed specific reflective properties of Al-Cu-Fe quasicrystal thin film in some wavelength range. The optical conductivity of the films exhibited a negative peak, centered about 440 nm in range of 190 to 800 nm. The Al-Cu-Fe quasicrystal thin films could absorb almost all the ray in the wavelength range from 420nm to 450 nm. The ratio of absorption was greater than 99%.  相似文献   

9.
Abstract

A stable decagonal quasicrystal in Al70Pd30?xMnx alloys (x = 10–20) was examined by electron diffraction and high-resolution electron microscopy. The decagonal quasicrystalline grains are formed with definite crystallographic relationships to adjacent icosahedral and Al3Mn crystalline grains. The structure of the decagonal phase, which is formed as the main phase at near Al70Pd10Mn20 composition, is a mixture of decagonal quasicrystalline regions with some linear phason strain and microcrystalline regions. The structures of both regions may be interpreted in terms of quasiperiodic and periodic tilings, constructed with two types of bond lengths, S (about 2 nm) and L (= τ · S, where τ is the Golden ratio), of the same atom cluster with decagonal symmetry.  相似文献   

10.
Ti–Zr–Ni samples with a substantial predominance of icosahedral quasicrystalline phase were produced by the melt-spinning technique. Their structure and mechanical properties were studied by X-ray diffraction and nanoindentation methods. The quasicrystalline phase was found to have a primitive lattice with the quasicrystallinity parameter a q = 0.5200–0.5210?nm. Quasicrystalline deformation behaviour under nanoindentation versus phase composition and structure is discussed in comparison with single crystal W–12?wt%?Ta. The estimated elastic modulus E of the quasicrystalline phase shows no correlation with the element composition. The nanohardness was shown to increase with increasing quasicrystalline-phase perfection. Load–displacement curves of Ti–Zr–Ni quasicrystals (QCs) show stepwise character with alternation of elastic and plastic sections. Such non-uniform plastic flow in QCs might be caused by the localization of plastic deformation in shear bands. The non-uniformity of the plastic deformation increases with the increasing quasicrystalline phase perfection.  相似文献   

11.
The Bragg diffraction contrast of dislocations in icosahedral Al62Cu25.5Fe12.5 was investigated experimentally in the transmission electron microscope. In good agreement with the results of a theoretical treatment based on the kinematical column approximation, it was found that the contrast vanishes under two basically different diffraction conditions. This is different from the behaviour in normal crystals and is due to the special structural features of dislocations in quasiperiodic lattices. Quantitative evaluation of the results indicates that the phason component of the dislocation strain field is substantially stronger than the phonon component.  相似文献   

12.
Potassium dihydrogen phosphate (KDP) crystals grown along the type-II phase-matching direction were investigated for crystalline and optical perfection. High-resolution X-ray diffraction (HRXRD) technique was used for investigating crystalline perfection. UV–VIS transmission, Mach–Zehnder interferometry, birefringence interferometry and conoscopy were performed for optical characterization. HRXRD results show that the grown crystals have good structural perfection. A uniform transmittance of 92% was observed in the visible region of the spectrum. Straight and parallel fringes were observed in Mach–Zehnder interferometric studies. A symmetrical fringe pattern was obtained in conoscopy images. These interferometric results suggest that the optical homogeneity of the grown crystal was good and not influenced by the growth technique.  相似文献   

13.
High-resolution synchrotron-radiation powder diffraction experiments were performed to observe structural changes induced by hydrogen loading in rapidly-quenched Ti-Zr-Ni alloy ribbons with dominant icosahedral character. Lattice expansion effects due to hydrogen storage in Ti-Zr-Ni quasicrystals as well as phonon and phason disorder coefficients are obtained from an analysis of diffraction linewidths. Received: 26 August 1997 / Revised: 8 January 1998 / Accepted: 10 February 1998  相似文献   

14.
A detailed investigation of the Fourier space of several Al-Pd-Mn samples with composition Al-72.6 at. %, Pd-22.9 at. %, Mn-4.5 at. % is reported. In the phase diagram of the Al-Pd-Mn ternary alloy, this composition corresponds to the so-called ξ' phase which was described as an icosahedral quasicrystalline approximant. By re-examining the Fourier space by means of X-ray diffraction (powder patterns and single crystal precession patterns), complex structures in close relation with the ξ'-phase have been observed. These long-range order complex structures are described as resulting from a periodic perturbation of the ξ' structure along the c direction. Two states with periodicities c (3 + τ) and c (5 + τ) have been observed in this study (τ: golden mean). Structural models based on periodic arrangements of “defects” layers separating layers of phase are proposed. These two states are certainly intermediate states between the phase and the metastable decagonal quasicrystalline phase. Received 11 April 2002 / Received in final form 24 June 2002 Published online 17 September 2002  相似文献   

15.
We report on the absolute scale measurement of the x-ray diffuse scattering in the ZnMgSc icosahedral quasicrystal and its periodic approximant. Whereas the diffuse scattering in the approximant is purely accounted for by thermal diffuse scattering, an additional signal is observed in the quasicrystal. It is related to phason fluctuations as indicated by its Q(2)(per) dependence. Moreover, when compared to previous measurements carried out on the i-AlPdMn phase, we find that the amount of diffuse scattering is smaller in the i-ZnMgSc phase, in agreement with larger phason elastic constants in this phase. This is confirmed by the observation of a large number of weak Bragg peaks having a high Q(per) reciprocal space component.  相似文献   

16.
Quasicrystals and related approximant phases in Mg-Zn-Y   总被引:3,自引:0,他引:3  
As-cast microstructure of Mg-rich Mg(68)Zn(28)Y(4) has been investigated by a detailed transmission electron microscopy study. The as-cast Mg(68)Zn(28)Y(4) alloy consisted of three different types of phases: 10-20 m size primary solidification phase, dendritic phase grown from the primary phase and a eutectic structure formed at the later stage of solidification. The primary solidification phase has an icosahedral structure with a large degree of phason strain. 1/1 rhombohedral approximant phase with lattice parameters a=27.2 A and =63.43 degrees is first observed in Mg-Zn-Y system. The rhombohedral structure can be obtained by introducing phason strain in the six-dimensional face centered hyper-cubic lattice. The decagonal phase nucleates with orientation relationship with the icosahedral phase, and Mg(4)Zn(7) nucleates with orientation relationship with the decagonal phase, indicating a close structural similarity between the three phases. Gradual depletion of Y during solidification plays an important role in heterogeneous nucleation of decagonal and Mg(4)Zn(7) phases from icosahedral and decagonal phases, respectively.  相似文献   

17.
We have evaporated Ni on the pentagonal surface of an icosahedral Al-Pd-Mn quasicrystal kept at room temperature. At the initial stage of growth, Ni intermixes with the substrate surface. Subsequently, Al from the quasicrystal matrix migrates to growing layers. The modified chemical composition in an initially icosahedral region near the surface induces a structural transformation. An Al-Pd-Mn alloy is formed which consists of five cubic domains with dimensions in the nm-range exposing their (1 1 0) faces parallel to the surface. These domains are azimuthally rotated by 2π/5 with respect to each other and aligned with symmetry directions of the icosahedral substrate. Al-Mn-Ni, Al-Ni, and Ni overlayers adopt both structure and orientation of these domains which stabilises Ni in a novel body-centred cubic phase. Ni-rich overlayers exhibit out-of-plane magnetic ordering.  相似文献   

18.
Crystalline textured and columnar structures, as well as needlelike ZnTe single crystals, were grown from the vapor phase and in a tellurium melt under deviation of the growth conditions from equilibrium. Low-temperature photoluminescence and x-ray structural studies showed the samples thus grown to exhibit high structural perfection, a uniform impurity distribution, and weak interaction between impurities and defects of the crystal structure. Polariton scattering from neutral donors was detected in structures having a noticeable residual concentration of donors in the substituted state. It is shown that the spectrum of samples grown under nonequilibrium conditions exhibits transitions that are not typical of equilibrium crystals. Measurements of the luminescence spectra as a function of temperature, excitation level, and annealing conditions made it possible to draw tentative conclusions about the nature of these transitions.  相似文献   

19.
We have investigated single crystal Ir(111) films grown heteroepitaxially on Si(111) wafers with yttria-stabilized zirconia (YSZ) buffer layers as possible substrates for an up-scalable synthesis of graphene. Graphene was grown by chemical vapor deposition (CVD) of ethylene. As surface analytical techniques we have used scanning tunneling microscopy (STM), low-energy electron diffraction, scanning electron microscopy, and atomic force microscopy. The mosaic spread of the metal films was below 0.2° similar to or even below that of standard Ir bulk single crystals, and the films were basically twin-free. The film surfaces could be improved by annealing so that they attained the perfection of bulk single crystals. Depending on the CVD conditions a lattice-aligned graphene layer or a film consisting of different rotational domains were obtained. STM data of the non-rotated phase and of the phases rotated by 14° and 19° were acquired. The quality of the graphene was comparable to graphene grown on bulk Ir(111) single crystals.  相似文献   

20.
Chemical shifts of the constituent atoms of primitive icosahedral quasicrystal (P-QC), face-centred icosahedral quasicrystal (F-QC) and 1/1-approximant (1/1-AP) of F-QC Zn–Mg–Zr alloys were investigated for the first time using high energy-resolution electron energy-loss spectroscopy (EELS) and soft-X-ray emission spectroscopy (SXES). Among Zn M-shell and Mg L-shell excitation EELS spectra of P-QC, F-QC and 1/1-AP alloys, only the quasicrystalline alloys showed a chemical shift towards the larger binding energy side. In Zn-L and Zr-L emission SXES spectra, the P-QC and F-QC alloys showed a chemical shift towards larger binding energy side. The magnitudes of the shifts in the Zn-L emission spectra of the quasicrystalline alloys were almost the same as for ZnO. These results strongly suggest a decrease in valence charge in quasicrystalline states. Therefore, it should be concluded that bonding in quasicrystalline states involves a characteristic increase in covalency compared with bonding in corresponding approximant and standard metal crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号