首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
Magnetic and crystallographic properties have been studied by neutron powder diffraction and measurements of magnetization and magnetization hysteresis-loops for substituted spinels of Zn1?xCuxCr2Se4 with 0.0≤x≤0.3. It is found that the Zn0.85Cu0.15Cr2Se4 spinel has two magnetic phase transitions at 23.0 K (Néel temperature; T N) and 410 K (Curie temperature; T C) and that the Zn0.70Cu0.30Cr2Se4 spinel has magnetic transitions at 24.5 K (T N) and 415 K (T C) on heating. The low-temperature magnetic phase transition is from a spiral antiferromagnet to a ferromagnet, and the high-temperature magnetic phase transition is from a ferromagnet to a paramagnet, while ZnCr2Se4 shows a magnetic phase transition only from a spiral antiferromagnet to a paramagnet at about 21.0 K. From neutron powder diffraction, it is also found that the spinels of Zn1?x Cu x Cr2Se4; 0.0 ≤ x ≤ 0.3. show satellite-like magnetic reflection having indexes (h ± Q, k, l) with Q = 0.470 below T N and short-range order of spins (spin glass-like) above T N. The incommensurate antiferromagnetic phase below T N results from a spiral long-range order of the spins of Cr3+. The intermediate ferromagnetic phase between T N and T C is related not to the spiral spin order but to double-exchange magnetic interaction among Cr3+ and Cr4+ mediated by current carriers, positive holes, which is made by the substitution of Zn2+ ions with Cu1+ ions in Zn1?x Cu x Cr2Se4.  相似文献   

2.
An ordered state with a complex magnetic structure has been observed below 4CK. The magnetization for H ⊥ c (c; the c-axis) shows a field-induced phase transition from a small magnetic moment state ( ~ 0.6μB) at lower fields to a larger moment one ( 2.2 - 2.5μB) above 25kG. The transition field depends on temperature and is found to be 5 - 2kG. The magnetization for H//c has only a sublinear field dependence. Above 40K the magnetic susceptibility obeys the Curie-Weiss law with θ = +1.3K and the molar Curie constant Cm = 6.78, which suggests that Eu ion is divalent in C6Eu.  相似文献   

3.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

4.
We have studied the magnetic cluster compound Nb6F15 which has an odd number of 15 valence electrons per (Nb6F12)3+ cluster core, as a function of temperature using nuclear magnetic resonance, magnetic susceptibility, electron magnetic resonance and neutron powder diffraction. Nuclear magnetic resonance of the 19F nuclei shows two lines corresponding to the apical Fa?a nucleus, and to the inner Fi nuclei. The temperature dependence of the signal from the Fi nuclei reveals an antiferromagnetic ordering at T < 5 K, with a hyperfine field of ~2 mT. Magnetic susceptibility exhibits a Curie–Weiss behavior with T N ~5 K, and μ eff ~1.57 μB close to the expected theoretical value for one unpaired electron (1.73 μB). Electron magnetic resonance linewidth shows a transition at 5 K. Upon cooling from 10 to 1.4 K, the neutron diffraction shows a decrease in the intensity of the low-angle diffuse scattering below Q ~0.27 Å?1. This decrease is consistent with emergence of magnetic order of large magnetic objects (clusters). This study shows that Nb6F15 is paramagnetic at RT and undergoes a transition to antiferromagnetic order at 5 K. This unique antiferromagnetic ordering results from the interaction between magnetic spins delocalized over each entire (Nb6F 12 i )3+ cluster core, rather than the common magnetic ordering.  相似文献   

5.
Using powder neutron diffraction techniques, we have examined the magnetic order of the pseudoternary compound Ho(Rh0.3Ir0.7)4B4 below the Néel temperature TN=2.7K. The magnetic structure consists of stacked antiferromagnetic basal plane sheets forming a body centered tetragonal unit cell, with a sublattice magnetization corresponding to 9.6±0.6μB per Ho3+ion at 1.5 K. Magnetic intensity versus temperature measurements indicate that the transition is second order and reveal no anomalous effects when the compound becomes superconducting at Tc=1.34K.  相似文献   

6.
For the polycrystalline samples of Mn1?xCuxCr2S4 (x = 0.85, 0.90, 0.95) the magnetization was measured in the temperature range between 77 K and the Curie temperature, TC, using a magnetic balance (Faraday's method) and pulsed magnetic fields up to 2.0 T. The magnetic susceptibility was measured between TC and about 600 K. The Curie temperatures were obtained using the kink point method.In the temperature range between 4.2 and 77 K the magnetization was measured in stationary magnetic fields up to 14 T. The data indicate a noncollinear ferrimagnetic structure. The compounds under investigation can be treated as CuCr2S4 slightly doped with Mn, with a valence distribution Mn2+1?xCu1+xCr3+2?xCr4+xS2?4.  相似文献   

7.
A study of the half-metallic character of the semi Heusler alloys Co1−xCuxMnSb (0?x?0.9) is presented. We investigated the saturation magnetization MS at temperatures from 5 K to room temperature and the temperature dependence of the DC magnetic susceptibility χ above Curie temperature TC. The magnetic moments at 5 K, for most compositions are very close to the quantized value of 4 μB for Mn3+ ion, the compound with 90% Co substituted by Cu is still ferromagnetic with MS (5 K)=3.78 μB/f.u. These results emphasize the role of Co atoms in maintaining the ferromagnetic order in the material. The Curie temperature is decreased from 476 K to about 300 K as the Cu content increases from 0% to 90%. Above TC, the χ−1 vs T curves follow very well the Curie–Weiss law. The effective moment μeff and paramagnetic Curie temperature θ are derived. A comparison between the values of MS at 5 K and μeff shows a transition from localized to itinerant spin system in these compounds.  相似文献   

8.
CuB2O4 single crystals have been grown and their magnetic and resonance properties have been investigated for the first time. The temperature dependence of the susceptibility was found to contain features at T=21 and 10 K. The CuB2O4 single crystal transformed at T=21 K to a weakly ferromagnetic state. The sharp drop in susceptibility at T<10 K is caused by a transition of the magnetic system of CuB2O4 to an antiferromagnetic state. The effective magnetic moment of the Cu2+ ion, determined from the high-temperature part of the magnetic susceptibility, is 1.77 μ B. The room-temperature g factors are, respectively, 2.170 and 2.133 for magnetic field parallel and perpendicular to the c axis of the crystal. The antiferromagnetic resonance parameters in the weakly ferromagnetic and antiferromagnetic phases were measured. Fiz. Tverd. Tela (St. Petersburg) 41, 1267–1271 (July 1999)  相似文献   

9.
The structural, electrical, and magnetic properties of ceramic perovskite manganites LaMnO3 + δ (δ = 0–0.154) are investigated. It is found that, in a weak magnetic field (B = 2 G), the LaMnO3 + δ manganite with δ = 0.065 at temperatures below the Curie temperature T C of the paramagnet-ferromagnet phase transition has a mixed (spin glass + ferromagnet) phase. In LaMnO3 + δ manganites with the parameter δ = 0.100–0.154, this phase transforms into a frustrated ferromagnetic phase. A similar transformation was observed previously in La1?x CaxMnO3 compounds at calcium contents in the range 0 ≤ x ≤ 0.3. This similarity is explained by the fact that, in both materials, the Mn4+ concentration and, accordingly, the hole concentration c change equally in the concentration range from ~0.13 to 0.34 with an increase in x or δ. However, the magnetic irreversibility, the concentration dependences of the Curie temperature T C(c) and the magnetic susceptibility X(c), and the critical behavior of the temperature dependence of the susceptibility X(T) in the vicinity of the Curie temperature T C differ substantially for these two materials. The observed differences are associated with the distortion of the cubic perovskite structure, the decrease in the degree of lattice disorder, and a more uniform distribution of holes in the LaMnO3 + δ manganites as compared to the La1 ? x CaxMnO3 compounds.  相似文献   

10.
A new spintronics material with the Curie temperature above room temperature, the ZnSiAs2 chalcopyrite doped with 1 and 2 wt % Mn, is synthesized. The magnetization, electrical resistivity, magnetoresistance, and the Hall effect of these compositions are studied. The temperature dependence of the electrical resistivity follows a semiconducting pattern with an activation energy of 0.12–0.38 eV (in the temperature range 124 K ≤ T ≤ 263 K for both compositions). The hole mobility and concentration are 1.33, 2.13 cm2/V s and 2.2 × 1016, 8 × 1016 cm−3 at T = 293 K for the 1 and 2 wt % Mn compositions, respectively. The magnetoresistance of both compositions, including the region of the Curie point, does not exceed 0.4%. The temperature dependence of the magnetization M(T) of both compositions exhibits a complicated character; indeed, for T ≤ 15 K, it is characteristic of superparamagnets, while for T > 15 K, spontaneous magnetization appears which correspond to a decreased magnetic moment per formula unit as compared to that which would be observed upon complete ferromagnetic ordering of Mn2+ spins or antiferromagnetic ordering of spins of the Mn2+ and Mn3+ ions. Thus, for T > 15 K, it is a frustrated ferro- or ferrimagnet. It is found that, unlike the conventional superparamagnets, the cluster moment μ c in these compositions depends on the magnetic field: ∼12000–20000μB for H = 0.1 kOe, ∼52–55μB for H = 11 kOe, and ∼8.6–11.0μB at H = 50 kOe for the compositions with 1 and 2 wt % Mn, respectively. The specific features of the magnetic properties are explained by the competition between the carrier-mediated exchange and superexchange interactions.  相似文献   

11.
Low-temperature magnetic properties and the susceptibility of the amorphous Nd4Fe58.1Cr19.4B18.5 alloy were studied. The temperature dependence of magnetization exhibits T3/2 behavior up to T/Tc=0.57. Spin-wave stiffness coefficient D=47 meV A2 is much smaller than that of amorphous Fe80B20 alloys. The temperature dependence of the susceptibility χ0 obeys Curie–Weiss law at T>1.5Tc. A larger effective magnetic moment per magnetic atom was obtained. The influence of Cr on low-temperature magnetic properties and the susceptibility was discussed.  相似文献   

12.
A series of Mn1−xCuxFe2O4, with x=0, 0.25, 0.50, 0.75 and 1.0, spinel ferrites were prepared by standard ceramic method, to study the effect of compositional variation on magnetic susceptibility, saturation magnetization (Ms), Curie temperature (Tc) and magnetic moments (μB). The Curie temperatures have been evaluated by measuring the ac susceptibility using the mutual inductance technique. On increasing Cu contents from 0.0 to 0.50, the saturation magnetization increases while the Curie temperature decreases. On further increase in Cu contents, x>0.50 a decreasing trend in Ms is exhibited while Tc continues to decrease. This effect can be partially related to the low magnetic moments of Cu+2 ions. The dominant interaction in all ferrite samples is A-B interaction which is due to the negative values of the characteristic temperature θ(K) showing that the magnetic ordering is antiferromagnetic. The Y-K angle increases gradually with increasing copper contents and extrapolates to 90° for CuFe2O4. From the computation of Y-K angles for Mn1−xCuxFe2O4, it can be concluded that the mixed copper ferrites exhibit a non-collinearity of the Y-K type while MnFe2O4 shows a Neel type of ordering.  相似文献   

13.
Low-field magnetic susceptibility and the magnetic field dependence of magnetization of Metglas 2605 A (Fe78Mo2B20) were studied between 300 and 600 K and in fields up to 10kG. It is shown here that for an amorphous ferromagnetic alloy, the various methods of determination of Curie temperature Tc give the same value, which in this case is (564 ± 1) K. The critical exponent γ is 1.7 ± 0.1. Our low-field susceptibility measurements on Metglas 2605 (Fe80B20) gives a Tc of (634 ± 3) K while the reported high-field method value is 647 K. These results are discussed in terms of crystallization temperatures.  相似文献   

14.
用单辊急冷法制备了非晶态(Fe1-xVx)84B16(x=0,0.02,0.04,0.06,0.10)合金的薄带,分别用磁天平和四端引线法测量了饱和磁化强度和高温电阻率的温度关系。得到平均每个磁性原子的磁矩随V含量的增加近似线性下降,计算出每个Fe原子和每个V原子的平均磁矩分别为2.08μB和-5.08μB。居里温度Tc从x=0时的622K下降到x=0.10时的478K。利用自旋波激发公式:σ(T)=σ(0)(1-BT* 关键词:  相似文献   

15.
Uranium Laves phase UTi2 does not exist in a pure form, but can be stabilised by the presence of hydrogen, which can be absorbed in concentration exceeding 5?H atoms/f.u. Low temperature specific heat, magnetic susceptibility, and resistivity indicate that UTi2H5 is a spin fluctuator close to the verge of magnetic ordering. Its susceptibility follows at high temperatures the Curie–Weiss law with U effective moment µeff[ ?= 3.1?µB/U and paramagnetic Curie temperature Θp = ?200 K. The temperature dependence of specific heat exhibits a pronounced and weakly field dependent upturn in Cp/T versus T below 10 K reflecting the effect of spin fluctuations. It can be described by an additional T½ term. The Sommerfeld coefficient γ = 256?mJ/mol K2 classifies the compound as a mid-weight heavy fermion. Spin fluctuations are affecting also electrical and thermal transport and thermoelectric power, which all resemble UAl2. A lattice anomaly at ≈ 240?K, attributed to the melting of hydrogen sublattice, reflects in most of bulk properties.  相似文献   

16.
The magnetic ordering of a series of magnesium-zinc ferrite, Zn0.3Mg x Fe2.7?x O4±δ (0.5≤x≤1.1; 0≤δ≤0.2) has been investigated using Mössbauer measurements in the temperature range 295–620 K. The samples were found to be magnetic at room temperature with a hyperfine field at each site which increases with iron content. The Curie temperature was also observed to increase in a similar manner. The slope of this increase forB hf andT c is steeper forx≤0.6 thanx≥0.7. It has also been observed that Mg2+ substitution by Zn2+ in MgFe2O4 affects the magnetic ordering and the internal hyperfine field. The Curie temperature decreases by ~200 K andB hf by ~20%.  相似文献   

17.
We present a detail study of the effect of excess metal atoms on the magnetic properties of Cu1+xCr2+yTe4 at 2-400 K. With the increase in x=0-1 and y<0.3, these compounds retain metallic behavior, while ferromagnetic ordering temperature reduces from 325 to 160 K. Our low field susceptibility χac measurements reveal a second transition on cooling below the ferromagnetic ordering; the transition at around 160-180 K intensifies with the excess amount of copper and chromium atoms. The value of spontaneous magnetization at 2 K remains between 2.6 and 2.9μB across all the compositions and it reduces with temperature as M(T)∼A0T3/2+A1T5/2, as expected for the excitation of Bloch's spin waves in a model of the Heisenberg ferromagnet. Our terminal composition Cu1.9Cr2.25Te4 showed only second transition at 160 K with short range magnetic order much above the transition temperature and in the absence of the specific heat jump at this temperature. The magnetic properties are explained as a result of random magnetic anisotropy in the excess-metal compositions induced by the interstitial atomic defects in their parent spinel structure. The large stuffing of cations has been made possible in the telluride compounds because of the large size of tellurium and also by the covalent bonding that stabilizes the defect structure.  相似文献   

18.
The projection of integrating optical, magnetic and electronic functionalities into a single material have aggravated passionate attention in mounting wide band gap diluted magnetic semiconductor (DMS) in the midst of room temperature ferromagnetism. We report the evidence of ferromagnetism in Cu-doped ZnSe quantum dots (QDs) below room temperature, grown from a single source precursor by lyothermal method with the sizes of approximately 3.2–5.14 nm. QDs mainly exhibit paramagnetic behavior between 80 and 300 K, with a weak ferromagnetic/anti-ferromagnetic exchange at lower temperature as observed by superconducting quantum interference device (SQUID) magnetometer. From the Curie–Weiss behavior of the susceptibility, Curie temperature (T c) of Cu-doped ZnSe sample has been evaluated. From EPR, we obtain the Lande-g factor in the Zeeman interaction term as 2.060. Photoluminescence and EPR measurements support and confirm the view that Cu2+ substitutes for Zn2+ in Cu-doped ZnSe quantum dots.  相似文献   

19.
Measurements of magnetic susceptibility between 300 and 100°K and of resistivity between 300 and 4.2°K are reported for the five intermediate compounds Cr2B, Cr3B3, CrB, Cr3B4 and CrB2. With the exception of CrB2 (antiferromagnetic TN = 88°K) all the compounds were found to be weakly temperature dependent paramagnets. Large, orbital contributions to the susceptibility are proposed for Cr2B and Cr5B3. It is suggested that with the formation of discrete boron networks and the associated change in band structure in the higher borides this contribution diminishes very rapidly. At low temperatures Cr2B1 CrB and CrB2 were all found to have a prominent T2 behaviour in ρ(T). At high temperatures the resistivities of CrB and CrB2 were found to vary linearly with temperature, the resistivity of Cr2B on the other hand seemed to follow a T(1 ? BT2) law.  相似文献   

20.
The magnetic behavior of amorphous Nd4(Fe0.75Cr0.25)77.5B18.5 alloys was investigated in the critical region. The Curie temperature TC and critical exponents β, γ and δ are found to be 141 K, 0.45±0.02, 1.64±0.08 and 4.66±0.10, respectively. The data are fitted to a magnetic equation of state characteristic of a second-order phase transition over a rather wide range of temperatures both above and below TC. It is noted that the values of the exponents are in disagreement with those derived for a three-dimensional Heisenberg ferromagnet and show an enhancement. This anomalous critical behavior may originate from magnetic inhomogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号