首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is a growing interest in the development of biosensors in the form of simple lateral flow devices that enable visual detection of nucleic acid sequences while eliminating several steps required for pipetting, incubation and washing out the excess of reactants. In this work, we present the first dipstick-type nucleic acid biosensors based on quantum dots (QDs) as reporters. The biosensors enable sequence confirmation of the target DNA by hybridization and simple visual detection of the emitted fluorescence under a UV lamp. The ‘diagnostic’ membrane of the biosensor contains a test zone (TZ) and a control zone (CZ). The CZ always fluoresces in order to confirm the proper function of the biosensor. Fluorescence is emitted from the TZ, only when the specific nucleic acid sequence is present. We have developed two general types of QD-based nucleic acid biosensors, namely, Type I and Type II, in which the TZ consists of either immobilized streptavidin (Type I) or immobilized oligodeoxynucleotides (Type II). The control zone consists of immobilized biotinylated albumin. No purification steps are required prior to the application of the DNA sample on the strip. The QD-based nucleic acid biosensors performed accurately and reproducibly when applied to (a) the visual detection of PCR amplification products and (b) visual genotyping of single nucleotide polymorphisms (SNPs) in human genomic DNA from clinical samples. As low as 1.5 fmol of double-stranded DNA were clearly detected by naked eye and the dynamic range extended to 200 fmol. The %CV were estimated to be 4.3–8.2.  相似文献   

2.
Owing to their excellent optical properties, luminescent semi-conductor quantum dots (QDs) have proven themselves to be an attractive choice in biological labeling. However, there exists the concern of cytotoxicity in using these heavy metal-based nanoparticles as molecular probes. In order to improve their general biocompatibility, CdSe/ZnS QDS are encapsulated in the natural biopolymer chitosan, forming monodisperse chitosan nanoparticles in the range of 60 nm in 1 single step. This straight forward method also allows for the synthesis of chitosan nanoparticles encapsulating multi-coloured QDs. In vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity tests on primary myoblast cells suggest that the cytotoxicity of the QDs is greatly reduced after chitosan encapsulation. At the same time, fluorescence confocal microscopy studies also prove that nanoparticles are small enough to be internalized into the myoblast cells. Our results show the ease of synthesizing biocompatible, nanometer-sized chitosan nanoparticles encapsulating QDs and their promise in biological applications such as ultra-sensitive bio-detection and labeling of biomolecules.  相似文献   

3.
The potential for a simultaneous two-colour diagnostic scheme for nucleic acids operating on the basis of fluorescence resonance energy transfer (FRET) has been demonstrated. Upon ultraviolet excitation, two-colours of CdSe/ZnS quantum dots with conjugated oligonucleotide probes act as energy donors yielding FRET-sensitized acceptor emission upon hybridization with fluorophore (Cy3 and Alexa647) labeled target oligonucleotides. Energy transfer efficiencies, Förster distances, changes in quantum yield and lifetime, and signal-to-noise with respect to non-specific adsorption have been investigated. The dynamic range and limit-of-detection are tunable with the concentration of QD-DNA conjugate. The Cy3 and Alexa647 acceptor schemes can detect target from 4 to 100% or 10 to 100% of the QD-DNA conjugate concentration, respectively. Nanomolar limits of detection have been demonstrated in this paper, however, results indicate that picomolar detection limits can be achieved with standard instrumentation. The use of an intercalating dye (ethidium bromide) as an acceptor to alleviate non-specific adsorption is also described and increases signal-to-noise from S/N < 2 to S/N = 9-10. The ethidium bromide system had a dynamic range from 8 to 100% of the QD-DNA conjugate concentration and could detect target in a matrix containing an excess of non-complementary nucleic acid.  相似文献   

4.
Synthesis, characterization and cell-biomarker applications for a novel series of comb-copolymers featuring hydrophobic amide side groups, carboxylates and other functionalities such as polymerizable side chains and PEG oligomers are reported. When used as polymer ligand shell for trioctylphosphine oxide (TOPO) coated quantum dots (QDs) these copolymers effectively solubilise CdSe/ZnS QDs in water. A systematic study was carried out to find the relation between the molecular structure of the copolymers, their ability to coat the QDs, and to suspend the nanocrystals in water. To demonstrate potential applications, highly luminescent QD/polymer assemblies were internalized into living and fixed cells.  相似文献   

5.
Nanoparticles with specific properties and functions have been developed for various biomedical research applications, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. The development of an effective delivery method of nanoparticles into the intracellular environment is challenging and success in this endeavor would be beneficial to many biological studies. Here, the well-established microelectrophoresis technique was applied for the first time to deliver nanoparticles into living cells. An optimal protocol was explored to prepare semiconductive quantum dots suspensions having high monodispersity with average hydrodynamic diameter of 13.2–35.0 nm. Micropipettes were fabricated to have inner tip diameters of approximately 200 nm that are larger than quantum dots for ejection but less than 500 nm to minimize damage to the cell membrane. We demonstrated the successful delivery of quantum dots via small electrical currents (–0.2 nA) through micropipettes into the cytoplasm of living human embryonic kidney cells (roughly 20–30 μm in length) using microelectrophoresis technique. This method is promising as a simple and general strategy for delivering a variety of nanoparticles into the cellular environment.  相似文献   

6.
Luminescent surface-modified CdSe semiconductor quantum dots (QDs), with nanoparticle (NP) size distribution in the order of 2-7 nm, have been synthesized for optical determination of cyanide ions. The nanoparticles have been functionalised with tert-butyl-N-(2-mercaptoethyl)-carbamate (BMC) groups and exhibit a strong fluorescent emission at about 580 nm with rather long fluorescence lifetimes (several hundred nanoseconds) in aerated methanolic solution. The observed luminescence emitted by the synthesized nanocrystals was tremendously increased by photo-activation under sunlight exposure. The functionalised QDs turned out to exhibit excellent long-term stability when stored in the dark (no significant changes in QDs luminescence emission intensity was observed even after two months from synthesis). The functionalisation of the NPs with carbamate ligand allowed a highly sensitive determination of free cyanide via analyte-induced changes in the photoluminescence (fluorescence quenching of intensity at 580 nm and lifetime changes) of the modified quantum dots (excited at 400 nm). A detection limit of 1.1 × 10−7 M (2.9 μg l−1) of cyanide ions was obtained, while the interfering effect of other inorganic anions (including NO3, Cl or SCN) was negligible even at 200-fold level concentrations in excess of cyanide.  相似文献   

7.
The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD605) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD–DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.  相似文献   

8.
Quantum dot (QD) nanoparticles (NPs) are increasingly used as highly valuable fluorescent biomarkers and as sensitive (bio)chemical probes. Interestingly, if certain metal impurities are incorporated during the NPs synthesis, phosphorescent QDs with analytical potential can be obtained.  相似文献   

9.
Hong Dinh Duong  Jong Il Rhee   《Talanta》2007,73(5):899-905
In the present work, CdSe/ZnS core-shell quantum dots were synthesized and conjugated with enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP). The complex of enzyme-conjugated QDs was used as QD-FRET-based probes to sense glucose. The QDs were used as an electron donor, whereas GOD and HRP were used as acceptors for the oxidation/reduction reactions involved in oxidizing glucose to gluconic acid. Electron transfer between the redox enzymes and the electrochemical reduction of H2O2 (or O2) occurred rapidly, resulting in an increase of the turnover rate of the electron exchange between the substrates (e.g. glucose, H2O2 and O2) and the enzymes (GOD, HRP), as well as between the QDs and the enzymes. The transfer of non-radiative energy from the QDs to the enzymes resulted in the fluorescence quenching of the QDs, corresponding to the increase in the concentration of glucose. The linear detection ranges of glucose concentrations were 0–5.0 g/l (R = 0.992) for the volume ratios of 10/5/5, 0.2–5.0 g/l (R = 0.985) for the volume ratios of 10/5/3 and 1.0–5.0 g/l (R = 0.982) for the volume ratios of 10/5/0. Temperature (29–37 °C), pH (6–10) and some ions (NH4+, NO3, Na+, Cl) had no interference effect on the glucose measurement.  相似文献   

10.
The resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and quantum dots (QDs, emission at 593 nm) acceptors (CRET) was investigated. The resonance energy transfer efficiencies were compared while the oil soluble QDs, water soluble QDs (modified with thioglycolate) and QD-HRP conjugates were used as acceptor. The fluorescence of QD can be observed in the three cases, indicating that the CRET occurs while QD acceptor in different status was used. The highest CRET efficiency (10.7%) was obtained in the case of oil soluble QDs, and the lowest CRET efficiency (2.7%) was observed in the QD-HRP conjugates case. This result is coincident with the quantum yields of the acceptors (18.3% and 0.4%). The same result was observed in another similar set of experiment, in which the amphiphilic polymer modified QDs (emission at 675 nm) were used. It suggests that the quantum yield of the QD in different status is the crucial factor to the CRET efficiency. Furthermore, the multiplexed CRET between luminol donor and three different sizes QD acceptors was observed simultaneously. This work will offer useful support for improving the CRET studies based on quantum dots.  相似文献   

11.
It has been already three decades, since the fluorescent nanocrystals called quantum dots (QDs) appeared and attracted attention of a broad scientific community. Their excellent not only optical but also electronic properties predetermined QDs for utilization in a variety of areas. Besides lasers, solar cells, and/or computers, QDs have established themselves in the field of (bio)chemical labeling as well as medical imaging. However, due to the numerous application possibilities of QDs, there are high demands on their properties that need to be precisely controlled and characterized. CE with its versatile modes and possibilities of detection was found to be an effective tool not only for characterization of QDs size and/or surface properties but also for monitoring of their interactions with other molecules of interest. In this minireview, we are giving short insight in analysis of QDs by CE, and summarizing the advantages of this method for QDs characterization.  相似文献   

12.
In this paper, a simple and sensitive approach for H5N1 DNA detection was described based on the fluorescence resonance energy transfer (FRET) from quantum dots (QDs) to carbon nanotubes (CNTs) in a QDs-ssDNA/oxCNTs system, in which the QDs (CdTe) modified with ssDNA were used as donors. In the initial stage, with the strong interaction between ssDNA and oxCNTs, QDs fluorescence was effectively quenched. Upon the recognition of the target, the effective competitive bindings of it to QDs-ssDNA occurred, which decreased the interactions between the QDs-ssDNA and oxCNTs, leading to the recovery of the QDs fluorescence. The recovered fluorescence of QDs was linearly proportional to the concentration of the target in the range of 0.01–20 μM with a detection limit of 9.39 nM. Moreover, even a single-base mismatched target with the same concentration of target DNA can only recover a limited low fluorescence of QDs, illustrating the good anti-interference performance of this QDs-ssDNA/oxCNTs system. This FRET platform in the QDs-ssDNA/oxCNTs system was facilitated to the simple, sensitive and quantitative detection of virus nucleic acids and could have a wide range of applications in molecular diagnosis.  相似文献   

13.
The application of luminescent semiconductor quantum dots (QDs) within a wide range of biological imaging and sensing formats is now approaching its 15th year. The unique photophysical properties of these nanomaterials have long been envisioned as having the potential to revolutionize biosensing within cellular studies that rely on fluorescence. However, it is only now that these materials are making the transition towards accomplishing this goal. With the idea of understanding how to actively incorporate QDs into different types of cellular biosensing, we review the progress in many of the areas relevant to achieving this goal. This includes the synthesis of the QDs themselves, with an emphasis on minimizing potential toxicity, along with the general methods for making these nanocrystalline structures stable in aqueous media. We next survey some methods for conjugating QDs to biomolecules to allow them to participate in active biosensing. Lastly, we extensively review many of the applications where QDs have been demonstrated in an active role in cellular biosensing. These formats cover a wide range of possibilities including where the QDs have contributed to: monitoring the cell's interaction with its extracellular environment; elucidating the complex molecular interplay that characterizes the plasma membrane; understanding how cells continuously endocytose and exocytose materials across the cellular membrane; visualizing organelle trafficking; and, perhaps most importantly, monitoring the intracellular presence of target molecules such as nucleic acids, nutrients, cofactors, and ions or, alternatively, intracellular responses to external changes in the environment. We illustrate these processes with examples from the recent literature and focus on what QDs can uniquely contribute along with discussing the benefits and liabilities of each sensing strategy. A perspective on where this field is expected to develop in both the near and long-term is also provided.  相似文献   

14.
A scheme for the simultaneous determination of oxygen and temperature using quantum dots and a ruthenium complex is demonstrated. The luminescent complex [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)]2+ is immobilized in a non-hydrolytic sol-gel matrix and used as the oxygen sensor. The temperature information is provided by the luminescent emission of core-shell CdSe-ZnS semiconductor nanocrystals immobilized in the same material. Measurements of oxygen and temperature could be performed with associated errors of ±2% of oxygen concentration and ±1 °C, respectively. In addition, it is shown that while the dye luminescence intensity is quenched both by oxygen and temperature, the nanocrystals luminescent emission responds only to temperature. Results presented demonstrate that the combined luminescence response allows the simultaneous assessment of both parameters using a single optical fiber system. In particular, it was shown that a 10% error in the measured oxygen concentration, induced by a change in the sample temperature, could be compensated using the nanocrystals temperature information and a correction function.  相似文献   

15.
CdSe quantum dots as luminescent probes for spironolactone determination   总被引:1,自引:0,他引:1  
Liang J  Huang S  Zeng D  He Z  Ji X  Ai X  Yang H 《Talanta》2006,69(1):126-130
Based on the quenching of the fluorescence of CdSe quantum dots (QDs) by spironolactone, a simple, rapid and specific method for spironolactone determination was proposed. In the optimum conditions, spironolactone concentration versus quantum dot fluorescence gave a linear response with an excellent 0.997 correlation coefficient, between 2.5 and 700 mg/mL (6.0-1680 μmol/L) and the limit of detection (S/N = 3) was 0.2 μg/mL (0.48 μmol/L). The contents of spironolactone in pharmaceutical tablets were determined by the proposed method and the results agreed with the claimed values. The possible mechanism for the reaction was also discussed.  相似文献   

16.
17.
The paper describes the first use of silanized semiconductor core-shell quantum dots as fluorescent labels for macromolecule, C-reactive protein determination in blood plasma. The controlled synthesis of CdSe cores, with successive shells of CdS, CdZnS, ZnS and coating with transparent, stable, and inert silica shell, provides quantum dots with a narrow emission band, high quantum yield, and prolonged signal stability. Finally, the quantum dots were conjugated with specific antibodies via carboxylic groups on the silica surface. The method was further used for the immunochromatographic assay of C-reactive protein, a diagnostically important inflammatory biomarker. Assays with both the fluorescent QDs and a widely used colloidal gold label were developed in parallel and compared. The silanized quantum dots provide a more sensitive assay with a detection limit of 1?ng/mL for C-reactive protein in standard solutions, whereas the common assay has a detection limit of 10?ng/mL. The possibility of quantitative evaluation of analyte content by a portable device was demonstrated; the accuracy of the measurements was in the range of 5%–10%. The tests were used to determine C-reactive proteins in human plasma samples. The selected optimized protocol for these samples is based on a 4-fold dilution. The final working range of the assay, 4–1,200?ng/mL, covers practically all important interval of C-reactive protein values for the characterization of acute, chronic, and local inflammatory processes. Due to their high physical stability and inertness as well as intense, stable, and reproducible fluorescence, silanized quantum dots may be applied for high-sensitive assays for different analytes.  相似文献   

18.
Duan J  Jiang X  Ni S  Yang M  Zhan J 《Talanta》2011,85(4):1738-1743
This paper described an investigation of a novel eco-friendly fluorescence sensor for Hg2+ ions based on N-acetyl-l-cysteine (NAC)-capped ZnS quantum dots (QDs) in aqueous solution. By using safe and low-cost materials, ZnS QDs modified by NAC were easily synthesized in aqueous medium via a one-step method. The quantitative detection of Hg2+ ions was developed based on fluorescence quenching of ZnS QDs with high sensitivity and selectivity. Under optimal conditions, its response was linearly proportional to the concentration of Hg2+ ions in a range from 0 to 2.4 × 10−6 mol L−1 with a detection limit of 5.0 × 10−9 mol L−1. Most of common physiologically relevant cations and anions did not interfere with the detection of Hg2+. The proposed method was applied to the trace determination of Hg2+ ions in water samples. The possible quenching mechanism was also examined by fluorescence and UV-vis absorption spectra.  相似文献   

19.
CdTe quantum dots (QDs), capped with mercaptopropionic acid (MPA), were synthesized and the variation of their fluorescence properties (steady state and lifetime) with pH was assessed in solution and when immobilized in a sol-gel host. Three different sizes of CdTe QDs with excited state lifetimes ranging from 42 to 48 ns and with emission maximum at 540 nm (QD540), 580 nm (QD580) and 625 nm (QD625) were selected. The solution pH affects the maximum emission wavelength (shifts to higher wavelengths of 23, 24 and 27 nm for QD540, QD580 and QD625, respectively), the excited state lifetime and the fluorescence intensity in a reversible way. Linearization of the maximum emission wavelength variation with the pH allows the estimation of an apparent ionization constant (pKa) for each QD: 6.5 ± 0.1 (QD540), 6.1 ± 0.5 (QD580) and 5.4 ± 0.3 (QD625). The variation of the QDs fluorescence properties was further explored using confocal laser scanning microscopy allowing the implementation of a new calibration method for pH imaging in solution. QDs were successfully immobilized on the tip of an optical fiber by dip-coating using sol-gel procedure. The immobilized QDs showed a similar pH behaviour to the one observed in solution and an apparent lifetime of 80, 68 and 99 ns, respectively. The proposed QDs based methodology can be successfully used to monitor pH using wavelength encoded data in imaging and fiber optic sensing applications.  相似文献   

20.
Highly luminescent water-soluble CdTe quantum dots(QDs) have been synthesized with an electrogenerated precursor.The obtained CdTe QDs can possess good crystallizability,high quantum yield(QY) and favorable stability.Furthermore,a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号